Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate shallow-water carbonates

Aragonite. Calcium carbonate is a common deposit in shallow tropical waters as a constituent of muds, or in the upper part of coral reefs where it precipitates from carbon dioxide-rich waters supersaturated with carbonate from intense biological photosynthesis and solar heating. Deposits of ooHtic aragonite, CaCO, extending over 250,000 km in water less than 5 m deep ate mined for industrial purposes in the Bahamas for export to the United States (19). [Pg.285]

Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration. Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration.
North Atlantic to 500 m in the North Pacific. This reflects an increasing addition of CO2 to deep waters as meridional overturning circulation moves them from the Atlantic to the Indian and then to the Pacific Ocean. Thus, as a water mass ages, it becomes more corrosive to calcium carbonate. Since aragonite is more soluble than calcite, its saturation horizon lies at shallower depths, rising from 3000 m in the North Atlantic to 200 m in the North Pacific. [Pg.396]

Because warm surface seawater is usually supersaturated with respect to calcium carbonate, abiogenic precipitation of calcite and aragonite does occur, at least when supersaturations are very high. These conditions are limited to shallow water where temperatures can get sufficiently high, namely coastal tropical seas. [Pg.468]

STROMATOLITE. A term that has been generally applied to variously shaped (often domal), laminated, calcareous sedimentary structures formed in a shallow-water environment under the influence of a mat or assemblage of sediment-binding blue-green algae that trap fine (silty) detritus and precipitate calcium carbonate and that commonly develop colonies or irregular accumulations of a constant shape, but with little or no... [Pg.1553]

More recent calculations such as those in this book indicate substantially lower saturation depths. Those calculated here are plotted in Figure 4.21. The SD is generally about 1 km deeper than that presented by Berger (1977). Clearly the new SD is much deeper than the R0 and appears only loosely related to the FL. Indeed, in the equatorial eastern Atlantic Ocean, the FL is about 600 m shallower than the SD. If these new calculations are even close to correct, the long cherished idea of a "tight" relation between seawater chemistry and carbonate depositional facies must be reconsidered. However, the major control of calcium carbonate accumulation in deep sea sediments, with the exceptions of high latitude and continental slope sediments, generally remains the chemistry of the water. This fact is clearly shown by the differences between the accumulation of calcium carbonate in Atlantic and Pacific ocean sediments, and the major differences in the saturation states of their deep waters. [Pg.163]

Figure 6.4. Histograms of the number of samples found within different ranges of saturation state with respect to aragonite for different shallow water calcium carbonate-rich sediments. Values for Bermuda, Florida Bay and the Everglades were calculated from the data of Berner (1966). (After Morse et al., 1985.)... Figure 6.4. Histograms of the number of samples found within different ranges of saturation state with respect to aragonite for different shallow water calcium carbonate-rich sediments. Values for Bermuda, Florida Bay and the Everglades were calculated from the data of Berner (1966). (After Morse et al., 1985.)...
One major paper attacking the problem of the relationship between the preservation of calcium carbonate in shallow anoxic marine sediments and their chemistry was by Aller (1982). The study was conducted at sites in Long Island Sound. The calcium carbonate content of the sediments decreased with increasing water depth. At the shallow FOAM (Friends of Anaerobic Muds) site shell layers associated with storms resulted in irregular variations in the carbonate content of the sediment. Ca2+ loss from the pore waters, indicative of calcium carbonate precipitation, was found only at the FOAM site below -20 cm depth. During the winter, elevated Ca2+ to CL ratios were observed near the sediment-water interface... [Pg.273]

Finally, this tripartite cyclicity is also seen in the frequency of occurrence of Phanerozoic ironstones and oolites (Figure 10.18). As sea level withdrew from the continents and continental freeboard increased, shallow-water areas with the requisite environmental conditions necessary to form oolite and ironstone deposits decreased in extent. Thus, as calcium carbonate deposidon increased on slopes and in the deep sea, carbonate oolite and ironstone deposition on shelves and banks nearly ceased. [Pg.582]

Bathurst R.G.C. (1974) Marine diagenesis of shallow water calcium carbonate sediments. Ann. Rev. Earth and Planet. Sci. 2, 257-274. [Pg.613]

Bernstein L.D. and Morse J.W. (1985) The steady-state calcium carbonate ion activity product of recent shallow water carbonate sediments in seawater. Mar. Chem. 15, 311-326. [Pg.615]

Morse J.W., Zullig J.J., Bernstein L.D., Millero F.J., Milne P Mucci A. and Choppin G.R. (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Amer. J. Sci. 285, 147-185. [Pg.653]

Wells A.J. and Illing L.V. (1964) Present-day precipitation of calcium carbonate in the Persian Gulf. In Delataic and Shallow Water Marine Deposits (ed. van Straaten) pp. 429-435. Elsevier Developments in Sedimentology Series, Elsevier, New York. [Pg.676]

Walter and co-workers (Walter and Burton, 1990 Walter et al., 1993 Ku et al., 1999) have made extensive efforts to demonstrate the importance of dissolution of calcium carbonate in shallow-water carbonate sediments. Up to — 50% carbonate dissolution can be driven by the sulfate reduction-sulfide oxidation process. In calcium carbonate-rich sediments there is often a lack of reactive iron to produce iron sulfide minerals. The sulfide that is produced by sulfate reduction can only be buried in dissolved form in pore waters, oxidized, or can diffuse out of the sediments. In most carbonate-rich sediments the oxidative process strongly dominates the fate of sulfide. Figure 6 (Walter et al., 1993) shows the strong relationship that generally occurs in the carbonate muds of Florida Bay between total carbon dioxide, excess dissolved calcium (calcium at a concentration above that predicted from salinity), and the amount of sulfate that has been reduced. It is noteworthy that the burrowed banks show much more extensive increase in calcium than the other mud banks. This is in good agreement with the observations of Aller and Rude (1988) that in Long Island Sound siliciclas-tic sediments an increased bioturbation leads to increased sulfide oxidation and carbonate dissolution. [Pg.3546]

There are three important minerals used by organisms to form hard tissues such as bones and shells. The most widespread of these is calcium carbonate, an important structural component in animals ranging from Protozoa to Mollusca and Echinoder-mata. It is also a minor component of vertebrate bones. Its widespread use is probably related to the generally uniform distribution of dissolved calcium bicarbonate. Animals employing calcium carbonate are most abundant in fresh waters containing large amounts of calcium and magnesium ("hard water") and in warm, shallow seas where the partial pressure of carbon dioxide is low (e.g., the formation of coral reefs by coelenterates). The successful precipitation of calcium carbonate depends upon the equilibrium ... [Pg.1000]

Sedimentary calcium carbonates are formed as the shells of marine plants and animals. Biologically produced CaCOs consists primarily of two minerals aragonite and calcite. Shallow-water carbonates, primarily corals and shells of benthic algae (e.g. Halimeda) are heterogeneous in their mineralogy and chemical composition but are composed mainly of aragonite and magnesium-rich calcite (see Morse and Mackenzie (1990) for a discussion). Carbonate tests of microscopic plants and animals, most of which hve in the surface ocean (there are also benthic animals that produce carbonate shells), are primarily made of the mineral calcite, which composes the bulk of the CaCOs... [Pg.419]


See other pages where Calcium carbonate shallow-water carbonates is mentioned: [Pg.1067]    [Pg.253]    [Pg.3543]    [Pg.65]    [Pg.182]    [Pg.78]    [Pg.269]    [Pg.482]    [Pg.378]    [Pg.468]    [Pg.468]    [Pg.518]    [Pg.540]    [Pg.1011]    [Pg.269]    [Pg.1129]    [Pg.185]    [Pg.94]    [Pg.153]    [Pg.200]    [Pg.218]    [Pg.229]    [Pg.501]    [Pg.1011]    [Pg.2665]    [Pg.3153]    [Pg.3338]    [Pg.3534]    [Pg.3540]    [Pg.3551]    [Pg.4002]    [Pg.4313]    [Pg.177]   
See also in sourсe #XX -- [ Pg.8 , Pg.311 ]




SEARCH



Calcium carbonate

Carbonated waters

Shallow water

Shallow-Water Carbonates

Water calcium

Water carbon)

© 2024 chempedia.info