Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate properties

The abihty of algiaates to form edible gels by reaction with calcium salts is an important property. Calcium sources are usually calcium carbonate, sulfate, chloride, phosphate, or tartrate (20). The rate of gel formation as well as the quaUty and texture of the resultant gel can be controlled by the solubihty and availabiUty of the calcium source. [Pg.432]

Fillers. These are used to reduce cost in flexible PVC compounds. It is also possible to improve specific properties such as insulation resistance, yellowing in sunlight, scuff resistance, and heat deformation with the use of fillers (qv). Typical filler types used in PVC are calcium carbonate, clays, siHca, titanium dioxide, and carbon black. [Pg.327]

Synthetic Marble. Synthetic marble-like resin products are prepared by casting or molding a highly filled monomer mixture or monomer—polymer symp. When only one smooth surface is required, a continuous casting process using only one endless stainless steel belt can be used (52,53). Typically on the order of 60 wt % inorganic filler is used. The inorganic fillers, such as aluminum hydroxide, calcium carbonate, etc, are selected on the basis of cost, and such properties as the translucence, chemical and water resistance, and ease of subsequent fabrication (54,55). [Pg.265]

A significant advantage of the PLM is in the differentiation and recognition of various forms of the same chemical substance polymorphic forms, eg, brookite, mtile, and anatase, three forms of titanium dioxide calcite, aragonite and vaterite, all forms of calcium carbonate Eorms I, II, III, and IV of HMX (a high explosive), etc. This is an important appHcation because most elements and compounds possess different crystal forms with very different physical properties. PLM is the only instmment mandated by the U.S. Environmental Protection Agency (EPA) for the detection and identification of the six forms of asbestos (qv) and other fibers in bulk samples. [Pg.333]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

Nonblack fillers such as the precipitated siHcas can reduce both rate and state of cure. The mechanism appears to be one of a competitive reaction between mbber and filler for the zinc oxide activator. Use of materials such as diethylene glycol or triethanolamine prevents this competition thereby maintaining the desired cure characteristics. Neutral fillers such as calcium carbonate (whiting) and clays have Httie or no effect on the cure properties. [Pg.242]

Both prototypal questions related illustrate the need for a successhil technical service professional to have a strong understanding of the customer s apphcations and processes, within proper intellectual property considerations. This need for a thorough understanding is not always straightforward. A common example of the complications that can arise is provided from the paint (qv) industry (11). If, for instance, a calcium carbonate suppHer would like a paint manufacturer to use their material versus a competitive one, the onus is on the suppHer to show that the material can be successfully used in the paint formula of interest. However, many such formulas are held as proprietary. The technical service professional therefore does not know the components of the paint. This would lead to an unworkable situation from an evaluation standpoint save for the fact that the paint company may supply a miHbase or other intermediate form of the paint to allow a proper comparison of carbonates to be carried out. Thus mutual benefits can result and no loss of proprietary information occur. [Pg.378]

The commercial grades of calcium carbonate from natural sources are either calcite, aragonite, or sedimentary chalk. In most precipitated grades aragonite is the predominant crystal stmcture. The essential properties of the two common crystal stmctures are shown in Table 1. [Pg.410]

Calcium carbonate is one of the most common filler/extenders used in the paint and coatings industry. Consumer and contractor paint formulas can include products from submicrometer size to coarse mesh sizes. The main function of calcium carbonate in paint is as a low cost extender. It is also used to improve brightness, appHcation properties, stabiHty, and exposure resistance. Coarse products help to lower gloss and sheen or even provide textured finishes. The selection of product type and particle size is deterrnined by the desired performance and cost of the coating. [Pg.411]

Calcium carbonate continues to be used in its original appHcation, putty, as weU as caulks, sealants (qv), adhesives (qv), and printing inks (qv). Large volumes are used in carpet backing and in joint cements. It is used to improve body, reinforcement, and other properties. [Pg.411]

Calcium carbonate is used in food and pharmaceutical appHcations for both its chemical and physical properties. It is used as an antacid, as a calcium supplement in foods, as a mild abrasive in toothpaste, and in chewing gum to name only a few (see EoOD ADDITIVES). [Pg.411]

Calcium carbonate - emits non-flammable gases and helps to reduce the supply of oxygen lo the burning surfaces. The FRLS cables thus produced would possess the required properties... [Pg.531]

Particulate fillers are divided into two types, inert fillers and reinforcing fillers. The term inert filler is something of a misnomer as many properties may be affected by incorporation of such a filler. For example, in a plasticised PVC compound the addition of an inert filler will reduce die swell on extrusion, increase modulus and hardness, may provide a white base for colouring, improve electrical insulation properties and reduce tackiness. Inert fillers will also usually substantially reduce the cost of the compound. Amongst the fillers used are calcium carbonates, china clay, talc, and barium sulphate. For normal uses such fillers should be quite insoluble in any liquids with which the polymer compound is liable to come into contact. [Pg.126]

For electrical insulation china clay is commonly employed whilst various calcium carbonates (whiting, ground limestone, precipitated calcium carbonate, and coated calcium carbonate) are used for general purpose work. Also occasionally employed are talc, light magnesium carbonate, barytes (barium sulphate) and the silicas and silicates. For flooring applications asbestos has been an important filler. The effect of fillers on some properties of plasticised PVC are shown in Figure 12.21 (a-d). [Pg.338]

Lucie, S., Kovacevic, V., Packham, D.E., Bogner, A., Gerzina, A., Stearate-modified calcium carbonate fillers and their effect on the properties of polyvinyl acetate, composites. Proc. 2nd Int. Symp. Polymer Surface Modification Relevance to Adhesion, Newark, NJ, 24-26 May, 1999. [Pg.347]

Reinforcing fillers (active) Fumed Silica (Si02) precipitated calcium carbonate (CaCOi) carbon black Thixotropic reinforcing agents (non-slump), adjustment of mechanical properties (cohesion) provide toughness to the elastomer as opposed to brittle materials. [Pg.701]


See other pages where Calcium carbonate properties is mentioned: [Pg.158]    [Pg.158]    [Pg.371]    [Pg.284]    [Pg.395]    [Pg.541]    [Pg.2]    [Pg.4]    [Pg.22]    [Pg.144]    [Pg.85]    [Pg.19]    [Pg.312]    [Pg.53]    [Pg.58]    [Pg.499]    [Pg.505]    [Pg.410]    [Pg.411]    [Pg.411]    [Pg.411]    [Pg.35]    [Pg.493]    [Pg.556]    [Pg.131]    [Pg.266]    [Pg.578]    [Pg.630]    [Pg.631]    [Pg.631]    [Pg.632]    [Pg.636]    [Pg.651]    [Pg.655]    [Pg.691]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Calcium carbonate

Calcium carbonate carbon composite physical properties

Calcium properties

Carbon properties

Carbonates properties

Mechanical properties calcium carbonate reinforcement

NR-based calcium carbonate mechanical properties

Polymer/calcium carbonate (CaCO mechanical properties

© 2024 chempedia.info