Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cadmium leaching

Figures 5 and 6 show cadmium leaching results from the prepared samples. There was the deviation of decreasing of cadmium concentration in the media during time. Figures 5 and 6 show cadmium leaching results from the prepared samples. There was the deviation of decreasing of cadmium concentration in the media during time.
This means that in the static conditions cadmium diffusion to solution mechanism was not prevailing, but the adsorption/diffusion/solution mechanism was present [22]. This means that the cadmium leached produced insol-... [Pg.183]

Cadmium leached much more readily than the other metals and may have been bound by a different mechanism, possibly by particle surface adsorption rather than by tight complexation. Cadmium was the most soluble cationic heavy metal used in this experiment. It desorbs at higher pH and is less tightly adsorbed than chromium or lead. It was first detected in the fourth... [Pg.224]

Oysters, cephalopods, crops grow on land fertilized with high doses of phosphate and sewage sludge contaminated cadmium leaching from enamel and pottery glazes contaminated water... [Pg.76]

In ceramics, unlike many industries, AAS has not been greatly used, partly because of chemical and other matrix problems, and partly because XRF appeared on the scene shortly after AAS came into use. Its main application in the ceramic industry has been in the determination of metal release from ceramic ware. This is a class of tests designed to establish the likelihood of lead or cadmium leaching from ceramic ware and involves a 24 h extraction at 22°C with 4% (v/v) acetic acid and subsequent determination of lead and cadmium by flame AAS. Current legislation in the USA is driving limits to a level where atom trap AAS, ICP, or graphite furnace AAS is needed. [Pg.509]

Much work has been done to determine levels of extractable cadmium leached from colored articles. This has been done to determine how much cadmium is likely to be released in food contact applications, and to predict cadmium release from waste products in landfill sites. It has been shown that in all but a few polymers insignificant levels of cadmium are leached out. [Pg.27]

Production and Economic Aspects. Thallium is obtained commercially as a by-product in the roasting of zinc, copper, and lead ores. The thallium is collected in the flue dust in the form of oxide or sulfate with other by-product metals, eg, cadmium, indium, germanium, selenium, and tellurium. The thallium content of the flue dust is low and further enrichment steps are required. If the thallium compounds present are soluble, ie, as oxides or sulfates, direct leaching with water or dilute acid separates them from the other insoluble metals. Otherwise, the thallium compound is solubilized with oxidizing roasts, by sulfatization, or by treatment with alkaU. The thallium precipitates from these solutions as thaUium(I) chloride [7791 -12-0]. Electrolysis of the thaUium(I) sulfate [7446-18-6] solution affords thallium metal in high purity (5,6). The sulfate solution must be acidified with sulfuric acid to avoid cathodic separation of zinc and anodic deposition of thaUium(III) oxide [1314-32-5]. The metal deposited on the cathode is removed, kneaded into lumps, and dried. It is then compressed into blocks, melted under hydrogen, and cast into sticks. [Pg.467]

The capability of zinc to reduce the ions of many metals to theh metallic state is the basis of important appHcations. However, metals are removed from zinc solutions by displacement with finely divided zinc before winning by electrolysis. Gold and silver are displaced from cyanide leach solutions with zinc and the following metals are similarly recovered from various solutions platinum group, cadmium, indium, thallium, and sometimes copper. [Pg.398]

Aeration must be avoided since it can oxidize and resolubiUze the cemented (precipitated) impurities. Filter presses are used after each step and the cakes are leached to recover various values. For example, cadmium is dissolved, recemented with zinc, and recovered on site either electrolyticaHy or by distillation. A copper residue of 25—60% copper is sold for recovery elsewhere. The other impurities cannot be recovered economically with the exception of cobalt in some plants. [Pg.403]

Air pollution problems and labor costs have led to the closing of older pyrometaHurgical plants, and to increased electrolytic production. On a worldwide basis, 77% of total 2inc production in 1985 was by the electrolytic process (4). In electrolytic 2inc plants, the calcined material is dissolved in aqueous sulfuric acid, usually spent electrolyte from the electrolytic cells. Residual soHds are generally separated from the leach solution by decantation and the clarified solution is then treated with 2inc dust to remove cadmium and other impurities. [Pg.386]

Zinc (76ppm of the earth s crust) is about as abundant as rubidium (78 ppm) and slightly more abundant than copper (68 ppm). Cadmium (0.16 ppm) is similar to antimony (0.2 ppm) it is twice as abundant as mercury (0.08 ppm), which is itself as abundant as silver (0.08 ppm) and close to selenium (0.05 ppm). These elements are chalcophiles (p. 648) and so, in the reducing atmosphere prevailing when the earth s crust solidified, they separated out in the sulfide phase, and their most important ores are therefore sulfides. Subsequently, as rocks were weathered, zinc was leached out to be precipitated as carbonate, silicate or phosphate. [Pg.1202]

The isolation of zinc, over 90% of which is from sulfide ores, depends on conventional physical concentration of the ore by sedimentation or flotation techniques. This is followed by roasting to produce the oxides the SO2 which is generated is used to produce sulfuric acid. The ZnO is then either treated electrolytically or smelted with coke. In the former case the zinc is leached from the crude ZnO with dil H2SO4, at which point cadmium is precipitated by the addition of zinc dust. The ZnS04 solution is then electrolysed and the metal deposited — in a state of 99.95% purity — on to aluminium cathodes. [Pg.1202]

For some non-ferrous metals (copper, lead, nickel) the attack by sulphuric acid is probably direct with the formation of sulphates. Lead sulphate is barely soluble and gives good protection. Nickel and copper sulphates are deliquescent but are gradually converted (if not leached away) into insoluble basic sulphates, e.g. Cu Cu(OH)2)3SO4, and the metals are thus protected after a period of active corrosion. For zinc and cadmium the sulphur acids probably act by dissolution of the protective basic carbonate film. This reforms, consuming metal in the process, redissolves, and so on. Zinc and cadmium sulphates are formed in polluted winter conditions whereas in the purer atmospheres of the summer the corrosion products include considerable amounts of oxide and basic carbonate. ... [Pg.343]

Purification of leach liquors - as an example, mention may be made of the removal of cadmium and thallium from a zinc sulfate solution. In this case it is very convenient to use metallic zinc as a cementing metal, since the zinc that enters into solution is recovered subsequently. [Pg.544]

Wastewater is generated in the primary zinc and primary cadmium recovery subcategories by acid plant blowdown, which results from sulfuric acid recovery, air pollution control, leaching, anode/ cathode washing, and contact cooling. The streams may contain significant concentrations of lead, arsenic, cadmium, and zinc. Tables 3.26 and 3.27 present classical and toxic pollutant data for the primary zinc and primary cadmium subcategories. [Pg.114]

In landfills, heavy metals have the potential to leach slowly into soil, groundwater, or surface water. Dry cell batteries contribute about 88% of the total mercury and 50% of the cadmium in the MSW stream. In the past, household batteries accounted for nearly half of the mercury used in the United States and over half of the mercury and cadmium in the MSW stream. When burned, some heavy metals such as mercury may vaporize and escape into the air, and cadmium and lead may end up in the ash. [Pg.1228]

In adults, a study of 75 autopsies of persons who had resided in a soft-water, leached soil region of North Carolina found a positive correlation between lead level in the aorta and death from heart-related disease (Voors et al. 1982). The association persisted after adjustment for the effect of age. A similar correlation was found between cadmium levels in the liver and death from heart-related disease. (Aortic lead and liver cadmium levels were considered to be suitable indices of exposure.) The effects of the two metals appeared to be additive. Potential confounding variables other than age were not included in the analysis. The investigators stated that fatty liver (indicative of alcohol consumption) and cigarette smoking did not account for the correlations between lead, cadmium and heart-disease death. [Pg.59]

Scarponi et al. [93] concluded that filtration of seawater through uncleaned membrane filters shows positive contamination by cadmium, lead, and copper. In the first filtrate fractions, the trace metal concentration maybe increased by a factor of two or three. During filtration, the soluble impurities are leached from the filter, which is progressively cleaned, and the metal concentration in the filtrate, after passage of 0.8 -11 of seawater, reaches a stable minimum value. Thus it is recommended that at least one litre of seawater at natural pH be passed through uncleaned filters before aliquots for analysis are taken... [Pg.52]

Thorium is widely but rather sparsely distributed its only commercial sources are monazite (together with the rare earths) and uranothorite (a mixed Th, U silicate). Uranium is surprisingly common and more abundant than mercury, silver or cadmium in the earth s crust. It is widely distributed and it is found scattered in the faults of old igneous rocks. Concentration by leaching followed by re-precipitation has produced a number of oxide minerals of which the most important are uranite (also called pitchblende) U308 and carnotite, K UC HVO -SF O. [Pg.365]

Finally, there are many metal-containing solid wastes that may undergo leaching if disposed to land spent catalysts (cobalt, nickel, vanadium) spent batteries (nickel, cadmium, lithium, lead) combustion ashes etc. [Pg.610]


See other pages where Cadmium leaching is mentioned: [Pg.231]    [Pg.239]    [Pg.241]    [Pg.184]    [Pg.50]    [Pg.55]    [Pg.107]    [Pg.245]    [Pg.257]    [Pg.259]    [Pg.231]    [Pg.239]    [Pg.241]    [Pg.184]    [Pg.50]    [Pg.55]    [Pg.107]    [Pg.245]    [Pg.257]    [Pg.259]    [Pg.55]    [Pg.174]    [Pg.17]    [Pg.401]    [Pg.387]    [Pg.387]    [Pg.393]    [Pg.143]    [Pg.573]    [Pg.323]    [Pg.92]    [Pg.271]    [Pg.234]    [Pg.51]    [Pg.612]    [Pg.83]    [Pg.445]    [Pg.120]    [Pg.121]    [Pg.702]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Leaching tests, cadmium

© 2024 chempedia.info