Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butane, decomposition

Calculated Rate Constants for Butane Decomposition CJLo — 2C2Hs ... [Pg.58]

Free radical eliminations are frequent during pyrolytic reactions, and they are common for linear chain polymers. At higher temperatures (600° C-900° C) this type of reaction is also common for small molecules and explains the formation of unsaturated or aromatic hydrocarbons from aliphatic ones. As an example, butane decomposition may take place as follows ... [Pg.14]

The K-butane pyrolysis is analysed here as an initial, simple example of a pyrolysis reaction mechanism. It is important to note that the pyrolysis reactions of small hydrocarbons are fundamental to the proper understanding of the whole process. In fact, the pyrolysis mechanism displays a typical hierarchical structure and the small hydrocarbons must be analysed first. Fig. 1 shows the main and minor products from K-butane decomposition, under isothermal conditions, at 1,093 K and 1 atm. Ethylene, propylene and methane are the main products, while only trace amount of butenes, ethane, benzene and cyclopenta-diene are observed. These model predictions have been confirmed and validated by several experimental measurements (Dente and Ranzi, 1983). [Pg.56]

Fig. 1. Mass fractions of the main products from K-butane decomposition, at 1,093 K and 1 atm (Model predictions). Fig. 1. Mass fractions of the main products from K-butane decomposition, at 1,093 K and 1 atm (Model predictions).
J. E. BLAKEMORE et al. (12) find that the initial rate of n-butane decomposition in a gold reactor of relatively high s/v ratio (32 in l) is depressed by the presence of small quantities of oxygen at 535 and 595 0. This result is similar to our own observations in pyrex vessels, at about 500°C (6c). [Pg.42]

This is an exothermic, reversible, homogeneous reaction taking place in a single liquid phase. The liquid butadiene feed contains 0.5 percent normal butane as an impurity. The sulfur dioxide is essentially pure. The mole ratio of sulfur dioxide to butadiene must be kept above 1 to prevent unwanted polymerization reactions. A value of 1.2 is assumed. The temperature in the process must be kept above 65°C to prevent crystallization of the butadiene sulfone but below lOO C to prevent its decomposition. The product must contain less than 0.5 wt% butadiene and less thM 0.3 wt% sulfur dioxide. [Pg.118]

Ethyl chloride can be dehydrochlorinated to ethylene using alcohoHc potash. Condensation of alcohol with ethyl chloride in this reaction also produces some diethyl ether. Heating to 625°C and subsequent contact with calcium oxide and water at 400—450°C gives ethyl alcohol as the chief product of decomposition. Ethyl chloride yields butane, ethylene, water, and a soHd of unknown composition when heated with metallic magnesium for about six hours in a sealed tube. Ethyl chloride forms regular crystals of a hydrate with water at 0°C (5). Dry ethyl chloride can be used in contact with most common metals in the absence of air up to 200°C. Its oxidation and hydrolysis are slow at ordinary temperatures. Ethyl chloride yields ethyl alcohol, acetaldehyde, and some ethylene in the presence of steam with various catalysts, eg, titanium dioxide and barium chloride. [Pg.2]

Thermal decomposition of unsubstituted 3,4,5,6-tetrahydropyridazine at 439 °C in the gas phase proceeds 55% via tetramethylene and 45% via a stereospecific alkene forming pathway. The thermal decomposition of labelled c/s-3,4,5,6-tetrahydropyridazine-3,4- f2 affords cfs-ethylene-l,2- f2, trans-ethylene-l,2-if2, c/s-cyclobutane-l,2- f2 and trans-cyclo-butane-1,2- /2 (Scheme 57) (79JA3663, 80JA3863). [Pg.39]

Explosion prevention can be practiced by mixing decomposable gases with inert diluents. For example, acetylene can oe made nonexplosive at a pressure of 100 atm (10.1 MPa) by including 14.5 percent water vapor and 8 percent butane (Bodurtha, 1980). One way to prevent the decomposition reaction of ethylene oxide vapor is to use methane gas to blanket the ethylene oxide hquid. [Pg.2315]

The decomposition of ethane has been extensively studied and several mechanisms have been postulated. The main products of the reaction are ethylene, C2F14, and hydrogen, Hj. However, there are small amounts of methane, CH4, butane, and other products. [Pg.51]

Polyethylene displays good heat resistance in the absence of oxygen in vacuum or in an inert gas atmosphere, up to the temperature of 290°C. Higher temperature brings about the molecular-chain scission followed by a drop in the molecular-weight average. At temperatures in excess of 360°C the formation of volatile decomposition products can be observed. The main components are as follows ethane, propane, -butane, n-pentane, propylene, butenes and pentenes [7]. [Pg.81]

British Foreign Minister Ernest Bevin once said that "The Kingdom of Heaven runs on righteousness, but the Kingdom of Earth tuns on alkanes." Well, actually he said "tuns on oil" not "runs on alkanes," but they re essentially the same. By far, the major sources of alkanes are the world s natural gas and petroleum deposits. Laid down eons ago, these deposits are thought to be derived from the decomposition of plant and animal matter, primarily of marine origin. Natural gas consists chiefly of methane but also contains ethane, propane, and butane. Petroleum is a complex mixture of hydrocarbons that must be separated into fractions and then further refined before it can be used. [Pg.99]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

A common deposition reaction combines the metal chloride with a hydrocarbon, such as butane, at an optimum deposition temperature of 1000°C.9 1 Other hydrocarbons can also be used. Another useful reaction is the decomposition of the chromium di cumene Cr[(C6H5)C3H7]2 in atemperature range of 300-550°C and at pressures of 0.5-50 Torr.0 1... [Pg.237]

The metabolism of NPYR is summarized in Figure 1. a-Hy-droxylation (2 or 5.position) leads to the unstable intermediates and decomposition of gives 4-hydroxybutyraldehyde [ ]. The latter, which exists predominantly as the cyclic hemiacetal 1, has been detected as a hepatic microsomal metabolite in rats, hamsters, and humans and from lung microsomes in rats (9-13). The role of 1 and as intermediates in the formation of 6 and 7 is supported by studies of the hydrolysis of 2-acetoxyNPYR and 4-(N-carbethoxy-N-nitrosamino)butanal, which both gave high yields of 7 (9,14). In microsomal incubations, can be readily quantified as its 2,4-dinitrophenylhydrazone derivative (15). The latter has also been detected in the urine of rats treated with NPYR ( ). [Pg.50]

The catalysts that allow the production of maleic anhydride from n-butane with high selectivity, like (V0)2P207, are characterized by a strong acidity, that, like a strong basicity, favors the decomposition of alkoxides to give the olefin and the diene. The catalysts that allow the production of maleic anhydride, either from n-butane or from butenes and butadiene, necessarily have particular sites that allow the insertion of oxygen atoms in the 1,4-position of butadiene. These sites are definitely absent on combustion catalysts. [Pg.490]

Futamura, S., Zhang, A., Prieto, G. and Yamamoto, T. (1998) Factors and intermediates governing byproduct distribution for decomposition of butane in nonthermal plasma, IEEE Trans. Ind. Appl. 34, 967-74. [Pg.391]

The yield of trans product (18) is decreased by the presence of a radical scavenger such as 1,1-diphenylethylene and increased by dilution of the reactants with methylene chloride or butane, indicating this product to result from the triplet carbene. A heavy-atom effect on the carbene intermediate was observed by photolysis of a-methylmercuridiazoacetonitrile. With c/s-2-butene as the trapping agent either direct photolysis or triplet benzophenone-sensitized decomposition results in formation of cyclopropanes (19) and (20) in a 1 1 ratio ... [Pg.256]

A great many reactions follow first-order kinetics or pseudo first-order kinetics over certain ranges of experimental conditions. Among these are many pyrolysis reactions, the cracking of butane, the decomposition of nitrogen pen-toxide (N205), and the radioactive disintegration of unstable nuclei. [Pg.28]

Potentially very explosive, it may be handled and transferred by low temperature distillation. It should be stored at —25°C to prevent decomposition and formation of explosive polymers [1]. The critical pressure for explosion is 0.04 bar, but presence of 15-40% of diluents (acetylene, ammonia, carbon dioxide or nitrogen) will raise the critical pressure to 0.92 bar [2], Further data on attenuation by inert diluents of the explosive decomposition of the diyne are available [3], During investigation of the cause of a violent explosion in a plant for separation of higher acetylenes, the most important finding was to keep the concentration of 1,3-butadiyne below 12% in its mixtures. Methanol is a practical diluent [4], The use of butane (at 70 mol%) or other diluents to prevent explosion of 1,3-butadiyne when heated under pressure has been claimed [5], It polymerises rapidly above 0°C. [Pg.2124]

NAPS technology in which butanal is extracted with a non-aqueous solvent would probably also work technically, but it would be economically disadvantaged over processes in which butanal is separated by vaporization. In addition, since aldehyde byproduct formation can be controlled by vaporization of dimers and trimers and ligand decomposition products can be controlled by adjustments of reactor and separator conditions, neither of these problems would be uniquely solved using NAPS. [Pg.20]

The course of decomposition of confirmed or presumed metallocyclo-butane intermediates is important, but most results reported deal with stoichiometric rather than catalytic processes. Retention of the 3-carbon skeleton via pathways d or f in Eq. (26) occurs much more frequently than does cleavage to metathesis-related products. For example, thermolysis of phenyl-substituted platinocyclobutanes yields propenylben-zenes and phenyl-cyclopropane, but no styrene or ethylene (77). Similarly, the decomposition of tantalum carbene adducts (8) with olefins... [Pg.464]

A high carbon monoxide pressure ( 5 atmos.) favours the formation of the butane. Possible mechanisms for its formation include homolytic cleavage of the benzyl-cobalt tetracarbonyl complex and recombination of the radicals to generate 2,3-diphenylbutane and dicobalt octacarbonyl, or a base-catalysed decomposition of the benzylcobalt tetracarbonyl complex (Scheme 8.4). The ethylbenzene and styrene could arise from the phenylethyl radical, or from the n-styrene hydridocobalt tricarbonyl complex. [Pg.371]

The insertion of CO is in many instances thermodynamically unfavourable the thermodynamically most favourable product in hydroformylation and carbonylation reactions of the present type is always the formation of low or high-molecular weight alkanes or alkenes, if chain termination occurs via (3-hydride elimination). The decomposition of 3-pentanone into butane and carbon monoxide shows the thermodynamic data for this reaction under standard conditions. Higher pressures of CO will push the equilibrium somewhat to the left. [Pg.248]

Heck arylation of ethene with, 42 494 lodomethane, catalytic decomposition, 35 144 2,3-IOI-isopropylidene-2,3-dihydroxy-l,4-bis-(dishenylphosphino) butane (DIOP) as catalyst, 25 90, 91... [Pg.128]

Q. Zhu, R. M. van Teeffelen, R. A van Santen, and E. J. M. Hensen, Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCls 11. Nitrous oxide decomposition, selective oxidation of benzene to phenol, selective reduction of nitrous oxide by MO-butane, J. Catal. 221, 575—583 (2004)... [Pg.152]


See other pages where Butane, decomposition is mentioned: [Pg.53]    [Pg.238]    [Pg.24]    [Pg.654]    [Pg.654]    [Pg.660]    [Pg.53]    [Pg.238]    [Pg.24]    [Pg.654]    [Pg.654]    [Pg.660]    [Pg.49]    [Pg.324]    [Pg.168]    [Pg.90]    [Pg.596]    [Pg.57]    [Pg.251]    [Pg.544]    [Pg.486]    [Pg.263]    [Pg.28]    [Pg.28]    [Pg.135]    [Pg.234]    [Pg.248]    [Pg.31]   
See also in sourсe #XX -- [ Pg.58 , Pg.59 ]




SEARCH



Butane ions, decomposition

Butane, decomposition photolysis

© 2024 chempedia.info