Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic pseudo-first order

Dissolution Kinetics. Pseudo first-order reactions are widely employed in the field of soil-water environmental science for evaluating physical, chemical, or biochemical events. A pseudo first-order dissolution example is given below to demonstrate the use of kinetics in identifying or quantifying minerals in simple or complex systems. Consider a metal carbonate solid (MC03s) reacting with a strong acid (HC1) ... [Pg.280]

Kinetics pseudo-first order reaction with respect to glucose (A)... [Pg.69]

In classical kinetics, intemiolecular exchange processes are quite different from the uniniolecular, first-order kinetics associated with intramolecular exchange. However, the NMR of chemical exchange can still be treated as pseudo-first-order kinetics, and all the previous results apply. One way of rationalizing this is as... [Pg.2103]

Kinetic measurements were performed employii UV-vis spectroscopy (Perkin Elmer "K2, X5 or 12 spectrophotometer) using quartz cuvettes of 1 cm pathlength at 25 0.1 C. Second-order rate constants of the reaction of methyl vinyl ketone (4.8) with cyclopentadiene (4.6) were determined from the pseudo-first-order rate constants obtained by followirg the absorption of 4.6 at 253-260 nm in the presence of an excess of 4.8. Typical concentrations were [4.8] = 18 mM and [4.6] = 0.1 mM. In order to ensure rapid dissolution of 4.6, this compound was added from a stock solution of 5.0 )j1 in 2.00 g of 1-propanol. In order to prevent evaporation of the extremely volatile 4.6, the cuvettes were filled almost completely and sealed carefully. The water used for the experiments with MeReOj was degassed by purging with argon for 0.5 hours prior to the measurements. All rate constants were reproducible to within 3%. [Pg.123]

The integrated form of the rate law for equation 13.4, however, is still too complicated to be analytically useful. We can simplify the kinetics, however, by carefully adjusting the reaction conditions. For example, pseudo-first-order kinetics can be achieved by using a large excess of R (i.e. [R]o >> [A]o), such that its concentration remains essentially constant. Under these conditions... [Pg.625]

The concentration of nitromethane, CH3NO2, can be determined from the kinetics of its decomposition in basic solution. In the presence of excess base the reaction is pseudo-first-order in nitromethane. For a standard solution of 0.0100 M nitromethane, the concentration of nitromethane after 2.00 s was found to be 4.24 X 10 M. When a sample containing an unknown amount of nitromethane was analyzed, the concentration remaining after 2.00 s was found to be 5.35 X 10 M. What is the initial concentration of nitromethane in the sample ... [Pg.626]

Direct-Computation Rate Methods Rate methods for analyzing kinetic data are based on the differential form of the rate law. The rate of a reaction at time f, (rate)f, is determined from the slope of a curve showing the change in concentration for a reactant or product as a function of time (Figure 13.5). For a reaction that is first-order, or pseudo-first-order in analyte, the rate at time f is given as... [Pg.629]

The analysis is carried out under conditions in which the reaction s kinetics are pseudo-first-order in picrate. Show that under these conditions, a plot of potential as a function of time will be linear. [Pg.633]

The concentration of phenylacetate can be determined from the kinetics of its pseudo-first-order hydrolysis reaction in an ethylamine buffer. When a standard solution of 0.55 mM phenylacetate is analyzed, the concentration of phenylacetate after 60 s is found to be 0.17 mM. When an unknown is analyzed, the concentration of phenylacetate remaining after 60 s is found to be 0.23 mM. What is the initial concentration of phenylacetate in the unknown ... [Pg.661]

When D and H3O+ are present in excess, the kinetics of the reaction are pseudo-first-order in H2O2, and can be used to determine the concentration of H2O2 by following the production of I2 with time. In one analysis the absorbance of the solution was measured after 240 s at 348 nm (where Beer s law holds for I2). When a set of standard solutions of H2O2 was analyzed, the following results were obtained... [Pg.661]

The concentration of chromic acid can be determined from its reduction by alcohols under conditions when the kinetics are pseudo-first-order in analyte. One approach is to monitor the absorbance of the solution at a wavelength of 355 nm. A standard solution of 5.1 X lO " M chromic acid yields absorbances of 0.855 and 0.709 at, 100 s and 300 s, respectively, after the reaction s initiation. When a sample with an unknown amount of chromic acid is analyzed under... [Pg.661]

Decomposition of diphenoylperoxide [6109-04-2] (40) in the presence of a fluorescer such as perylene in methylene chloride at 24°C produces chemiluminescence matching the fluorescence spectmm of the fluorescer with perylene was reported to be 10 5% (135). The reaction follows pseudo-first-order kinetics with the observed rate constant increasing with fluorescer concentration according to = k [flr]. Thus the fluorescer acts as a catalyst for peroxide decomposition, with catalytic decomposition competing with spontaneous thermal decomposition. An electron-transfer mechanism has been proposed (135). [Pg.269]

For those pesticides that are cometabolized, ie, not utilized as a growth substrate, the assumption of first-order kinetics is appropriate. The more accurate kinetic expression is actually pseudo-first-order kinetics, where the rate is dependent on both the pesticide concentration and the numbers of pesticide-degrading microorganisms. However, because of the difficulties in enumerating pesticide-transforming microorganisms, first-order rate constants, or half-hves, are typically reported. Based on kinetic constants, it is possible to rank the relative persistence of pesticides. Pesticides with half-hves of <10 days are considered to be relatively nonpersistent pesticides with half-hves of >100 days are considered to be relatively persistent. [Pg.218]

The kinetics of hydrolysis reactions maybe first-order or second-order, depending on the reaction mechanism. However, second-order reactions may appear to be first-order, ie, pseudo-first-order, if one of the reactants is not consumed in the reaction, eg, OH , or if the concentration of active catalyst, eg, reduced transition metal, is a small fraction of the total catalyst concentration. [Pg.218]

The points that we have emphasized in this brief overview of the S l and 8 2 mechanisms are kinetics and stereochemistry. These features of a reaction provide important evidence for ascertaining whether a particular nucleophilic substitution follows an ionization or a direct displacement pathway. There are limitations to the generalization that reactions exhibiting first-order kinetics react by the Sj l mechanism and those exhibiting second-order kinetics react by the 8 2 mechanism. Many nucleophilic substitutions are carried out under conditions in which the nucleophile is present in large excess. When this is the case, the concentration of the nucleophile is essentially constant during die reaction and the observed kinetics become pseudo-first-order. This is true, for example, when the solvent is the nucleophile (solvolysis). In this case, the kinetics of the reaction provide no evidence as to whether the 8 1 or 8 2 mechanism operates. [Pg.269]

The intermediate diphenylhydroxymethyl radical has been detected after generation by flash photolysis. Photolysis of benzophenone in benzene solution containing potential hydrogen donors results in the formation of two intermediates that are detectable, and their rates of decay have been measured. One intermediate is the PhjCOH radical. It disappears by combination with another radical in a second-order process. A much shorter-lived species disappears with first-order kinetics in the presence of excess amounts of various hydrogen donors. The pseudo-first-order rate constants vary with the structure of the donor with 2,2-diphenylethanol, for example, k = 2 x 10 s . The rate is much less with poorer hydrogen-atom donors. The rapidly reacting intermediate is the triplet excited state of benzophenone. [Pg.755]

The initial anhydride concentration was about 3 x 10 M, and the amine concentration was much larger than this. The reaction was followed spectrophoto-metrically, and good first-order kinetics were observed hence, the reaction is first-order with respect to cinnamic anhydride. It was not convenient analytically to use the isolation technique to determine the order with respect to allylamine, because it is easier to observe the cinnamoyl group spectrophotometrically than to follow the loss of amine. Therefore, the preceding experiment was repeated at several amine concentrations, and from the first-order plots the pseudo-first-order rate constants were determined. These data are shown in Table 2-1. Letting A represent... [Pg.26]

Considering the attention that we have given in this chapter to concentrationtime curves of complex reactions, it may seem remarkable that many kinetic studies never generate a comprehensive set of complicated concentration-time data. The reason for this is that complex reactions often can be studied under simplified conditions constituting important special cases for example, whenever feasible one chooses pseudo-first-order conditions, and then one studies the dependence of the pseudo-first-order rate constant on variables other than time. This approach is amplified below. [Pg.121]

An interesting kinetic study was carried out under pseudo-first-order conditions for the base hydrolysis of the three isomeric N-methyl-cyanopyridinium salts, a reaction that leads partly to CN replacement and partly to the formation of a carboxamido derivative. ... [Pg.292]

Reactions with uncharged species such as amines, alcohols, and water offer frequent opportunities for investigations under pseudo-first-order conditions since many of these reagents are suitable solvents. However, the reactions with amines have often been investigated in alcohols and in non-hydroxylic solvents 27-29a have been found to follow second-order kinetics. [Pg.292]

Even if the peak behavior fits well for a given apparent desorption order, the real kinetic situation may be a different one. As a rate controlling step in a second-order desorption, random recombination of two particles is assumed most frequently. However, should the desorption proceed via a nonrandom recombination of neighboring particle pairs into an ordered structure, the resulting apparent first-order desorption kinetics is claimed to be possible (36). The term pseudo-first-order kinetics is used in this instance. Vice versa, second-order kinetics of desorption can appear for a nondissociative adsorption, if the existence of a dimer complex is necessary before the actual desorption step can take place (99). A possibility of switching between the apparent second-order and first-order kinetics by changing the surface coverage has also been claimed (60, 99, 100). [Pg.376]

Bile ducts Various intravenous cholegraphic agents, e.g., iodipamide Biligrafin Anion transport Lin SK et al (1977) Iodipamide kinetics Capacity-limited biliary excretion with simultaneous pseudo-first-order renal excretion. J Pharm Sci 66 1670-1674... [Pg.1327]

The concentration of monomers in the aqueous phase is usually very low. This means that there is a greater chance that the initiator-derived radicals (I ) will undergo side reactions. Processes such as radical-radical reaction involving the initiator-derived and oligomeric species, primary radical termination, and transfer to initiator can be much more significant than in bulk, solution, or suspension polymerization and initiator efficiencies in emulsion polymerization are often very low. Initiation kinetics in emulsion polymerization are defined in terms of the entry coefficient (p) - a pseudo-first order rate coefficient for particle entry. [Pg.64]

Unusual reactivities of mechano-radicals have been reported in a few instances. To explain the pseudo first-order kinetics and the high yield of linear block copolymers formed during the mechanochemical degradation of a mixture of... [Pg.132]

With two of the concentrations in large excess, the fourth-order kinetic expression has been reduced to a first-order one, with considerable mathematical simplification. The experimental design in which all the concentrations save one are set much higher, so that they can be treated as approximate constants, is termed the method of flooding (or the method of isolation, since the dependence on one reagent is thereby isolated). We shall consider the method of flooding further in Section 2.7. Here our concern is with the data analysis it should be evident that the same treatment suffices for first-order and pseudo-first-order kinetics. [Pg.16]

In experiments with [sulfone]o = 3.15 x 10 5 M and excess N2H4, the reaction follows pseudo-first-order kinetics. Values of k vary with [N2H4]. Formulate the rate law and evaluate the constants therein ... [Pg.42]

If the method of analysis responds to A (or A2), the change follows pseudo-first-order kinetics. The value of Zt /tB] is k (or k2). On the other hand, if one monitors the buildup of P, then both rate constants contribute. We can write... [Pg.64]

Experiments with [ArH] [Hg] followed pseudo-first-order kinetics. Plots of 1 /k versus 1/tArH] were linear. Interpret this information in terms of a reaction scheme, and show how the intercept and slope of the plot are related to the kinetic constants. [Pg.153]

Proton inventory technique. 21.9-220 Pseudo-first-order kinetics, 16 Pulse-accelerated-flow method. 255 Pulse radiolysis, 266-268 Pump-probe technique. 266... [Pg.280]

The anticipated rate for mechanism (i) is rate = E[C 2H220,], while the expected rate for mechanism (ii) is rate = EfC HvjOnllHjOJ. The rate for mechanism (ii) will be pseudo-first-order in dilute solutions of sucrose because the concentration of water will not change. Therefore, in dilute solutions kinetic data can not be used ro distinguish between... [Pg.1009]


See other pages where Kinetic pseudo-first order is mentioned: [Pg.136]    [Pg.136]    [Pg.2114]    [Pg.2966]    [Pg.66]    [Pg.67]    [Pg.129]    [Pg.626]    [Pg.627]    [Pg.633]    [Pg.634]    [Pg.753]    [Pg.219]    [Pg.104]    [Pg.561]    [Pg.76]    [Pg.147]    [Pg.162]    [Pg.16]    [Pg.902]   
See also in sourсe #XX -- [ Pg.348 ]




SEARCH



Chemical kinetics pseudo-first-order reactions

Enzyme kinetics pseudo-first order

First-order kinetics

First-order pseudo

Kinetic first-order

Kinetic modeling pseudo first order reaction rate

Kinetic models pseudo-first-order

Kinetic order

Kinetics pseudo

Kinetics pseudo-first-order rate

Kinetics, chemical pseudo-first-order

Order pseudo

Ordering kinetic

Ordering kinetics

Polymerization kinetics, pseudo first order

Pseudo First-Order Kinetics and HX Rate Constants

Pseudo first order, kinetics acidity

Pseudo first-order kinetics

Pseudo first-order kinetics

Pseudo first-order reaction kinetics

Pseudo-first order kinetics, ligand substitution

Pseudo-first order kinetics, ligand substitution reactions

Pseudo-first order kinetics, substitution

Pseudo-first order kinetics, substitution reactions

Pseudo-first-order kinetics loss

Pseudo-first-order kinetics, deviation

Solvolysis pseudo-first-order kinetics

© 2024 chempedia.info