Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butane carbon monoxide

This is probably because 0 atoms produced in primary process (45) react much more rapidly with C2H6 than with N20. Several products are formed including ethylene, butane, carbon monoxide, hydrogen, methane, and probably ethanol and acetaldehyde. More ethylene is formed than one would expect from the amount of butane. It was found that 0 atoms react rapidly with ethylene, which is one of the photolytic products. The reaction-rate constant of O atoms with ethylene is estimated to be about 330 times as rapid as that with ethane.82 Complete elucidation of the mechanism of O-atom reaction with ethane is complicated because of the rapid reaction of O atoms with one or more of the products. [Pg.192]

Sn02 + Fc203 hydrogen, butane, carbon monoxide, propane, ethane, methane sintered pellet [9]... [Pg.377]

Butane Carbon monoxide Ethane Propane ethylene oligomerization, olefin prod. [Pg.5229]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

Fig. 3. Pressure required for ignition of mixtures of acetylene and a diluent gas (air, oxygen, butane, propane, methane, carbon monoxide, ethylene, oil gas, nitrogen, helium, or hydrogen) at room temperature. Initiation fused resistance wire. Container A, 50 mm dia x 305 mm length (73) B,... Fig. 3. Pressure required for ignition of mixtures of acetylene and a diluent gas (air, oxygen, butane, propane, methane, carbon monoxide, ethylene, oil gas, nitrogen, helium, or hydrogen) at room temperature. Initiation fused resistance wire. Container A, 50 mm dia x 305 mm length (73) B,...
Butane-Based Fixed-Bed Process Technology. Maleic anhydride is produced by reaction of butane with oxygen using the vanadium phosphoms oxide heterogeneous catalyst discussed earlier. The butane oxidation reaction to produce maleic anhydride is very exothermic. The main reaction by-products are carbon monoxide and carbon dioxide. Stoichiometries and heats of reaction for the three principal reactions are as follows ... [Pg.455]

Acetic acid (qv) can be produced synthetically (methanol carbonylation, acetaldehyde oxidation, butane/naphtha oxidation) or from natural sources (5). Oxygen is added to propylene to make acrolein, which is further oxidized to acryHc acid (see Acrylic acid and derivatives). An alternative method adds carbon monoxide and/or water to acetylene (6). Benzoic acid (qv) is made by oxidizing toluene in the presence of a cobalt catalyst (7). [Pg.94]

Normal Fluids. Asymmetrical compounds having Httle molecular interaction, eg, carbon monoxide, / -butane, and / -hexane, deviate slightly from the theory of corresponding states and are considered to be normal fluids. [Pg.239]

Amnioniii Benzene Acetic, ncid Carbon monoxide Methane (lire damp) Iso-amyl acetate Butane n-Bulyl alcohol n-Propyl alcohol Butanol Methanol n-Hexane Turpentine Mineral oils Cycio hexene ... [Pg.179]

Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide. Figure 14.7 Typical clnomatogram obtained by using the refinery analyser system shown in Figure 14.6. Peak identification is as follows 1, hydrogen 2, Cg+, 3, propane 4, acetylene 5, propene 6, hydrogen sulfide 6, iso-butane 8, propadiene 9, n-butane, 10. iso-butene 11, 1-butene 12, traw-2-butene 13, cw-2-butene 14, 1,3-butadiene 15, iso-pentane 16, w-pen-tane 17, 1-pentene 18, tro 5-2-pentene 19, cw-2-pentene 20, 2-inethyl-2-butene 21, carbon dioxide 22, ethene 23, ethane 24, oxygen + argon, 25, niti Ogen, 26, carbon monoxide.
Gas fuel Town gas Natural gas Methane Butane Propane Carbon monoxide... [Pg.187]

Values of yields for various fuels are listed in Table 2.3. We see that even burning a pure gaseous fuel as butane in air, the combustion is not complete with some carbon monoxide, soot and other hydrocarbons found in the products of combustion. Due to the incompleteness of combustion the actual heat of combustion (42.6 kJ/g) is less than the ideal value (45.4 kJ/g) for complete combustion to carbon dioxide and water. Note that although the heats of combustion can range from about 10 to 50 kJ/g, the values expressed in terms of oxygen consumed in the reaction (Aho2) are fairly constant at 13.0 0.3 kJ/g O2. For charring materials such as wood, the difference between the actual and ideal heats of combustion are due to distinctions in the combustion of the volatiles and subsequent oxidation of the char, as well as due to incomplete combustion. For example,... [Pg.37]

Compute the heat transferred in the oxidation of 1 mole of butane to carbon monoxide and water, with reactants and products at 25 °C. Use Table 2.2. [Pg.43]

A high carbon monoxide pressure ( 5 atmos.) favours the formation of the butane. Possible mechanisms for its formation include homolytic cleavage of the benzyl-cobalt tetracarbonyl complex and recombination of the radicals to generate 2,3-diphenylbutane and dicobalt octacarbonyl, or a base-catalysed decomposition of the benzylcobalt tetracarbonyl complex (Scheme 8.4). The ethylbenzene and styrene could arise from the phenylethyl radical, or from the n-styrene hydridocobalt tricarbonyl complex. [Pg.371]

In the presence of carbon monoxide this rhodium catalyst has no activity for hydrogenation and the selectivity based on starting material is virtually 100%. The butanal produced contains no alcohol and can be converted both to butanol and to other products as desired. [Pg.149]

The insertion of CO is in many instances thermodynamically unfavourable the thermodynamically most favourable product in hydroformylation and carbonylation reactions of the present type is always the formation of low or high-molecular weight alkanes or alkenes, if chain termination occurs via (3-hydride elimination). The decomposition of 3-pentanone into butane and carbon monoxide shows the thermodynamic data for this reaction under standard conditions. Higher pressures of CO will push the equilibrium somewhat to the left. [Pg.248]

NG is found to consist mainly of the lightweight alkanes, with varying quantities of carbon dioxide, carbon monoxide, hydrogen, nitrogen and oxygen, in some cases also hydrogen sulfide and possibly ammonia. A typical sample of NG when it is collected at its source contains 80% methane (CH ), 7% ethane (C Hj), 6% propane (CjHj), 4% butane and isobutane (C Hj ), and 3% pentane (CgHj ). [Pg.14]

Photolytic. Major products reported from the photooxidation of butane with nitrogen oxides under atmospheric conditions were acetaldehyde, formaldehyde, and 2-butanone. Minor products included peroxyacyl nitrates and methyl, ethyl and propyl nitrates, carbon monoxide, and carbon dioxide. Biacetyl, tert-butyl nitrate, ethanol, and acetone were reported as trace products (Altshuller, 1983 Bufalini et al, 1971). The amount of sec-butyl nitrate formed was about twice that of n-butyl nitrate. 2-Butanone was the major photooxidation product with a yield of 37% (Evmorfopoulos and Glavas, 1998). Irradiation of butane in the presence of chlorine yielded carbon monoxide, carbon dioxide, hydroperoxides, peroxyacid, and other carbonyl compounds (Hanst and Gay, 1983). Nitrous acid vapor and butane in a smog chamber were irradiated with UV light. Major oxidation products identified included 2-butanone, acetaldehyde, and butanal. Minor products included peroxyacetyl nitrate, methyl nitrate, and unidentified compounds (Cox et al., 1981). [Pg.204]

Chemical/Physical. Gaseous products formed from the reaction of cyclopentene with ozone were (% yield) formic acid (11), carbon monoxide (35), carbon dioxide (42), ethylene (12), formaldehyde (13), and butanal (11). Particulate products identified include succinic acid, glutaraldehyde, 5-oxopentanoic acid, and glutaric acid (Hatakeyama et al., 1987). [Pg.344]

Cyclocarbonylation of o-iodophenols 503 with isocyanates or carbodiimides and carbon monoxide in the presence of a catalytic amount of a palladium catalyst (tris(dibenzylideneacetone)dipalladium(O) Pd2(DBA)3) and l,4-bis(di-phenylphosphino)butane (dppb) resulted in formation of l,3-benzoxazine-2,4-diones 504 or 2-imino-l,3-benzoxazin-4-ones 505 (Scheme 94). The product yields were dependent on the nature of the substrate, the catalyst, the solvent, the base, and the phosphine ligand. The reactions of o-iodophenols with unsymmetrical carbodiimides bearing an alkyl and an aryl substituent afforded 2-alkylimino-3-aryl-l,3-benzoxazin-4-ones 505 in a completely regioselective manner <1999JOC9194>. On the palladium-catalyzed cyclocarbonylation of o-iodoanilines with acyl chlorides and carbon monoxide, 2-substituted-4f/-3,l-benzoxazin-4-ones were obtained <19990L1619>. [Pg.438]

In this regard, it is well to remember the role which the wall plays on the nature of the products obtained from gas phase oxidation. There is certainly common agreement that walls and wall reactions are important in this respect. For example, Hay et al. (11) have shown the importance of the walls in determining the nature and composition of the oxygenated products from 2-butane + 02 at 270°C. Cohens study on the photo-oxidation of acetone also illustrates this point (10). He found that if acetone is photolyzed by itself in a quartz vessel, the normal products—methane, ethane, carbon monoxide, and methyl ethyl ketone— are produced. [Pg.155]

Spinel oxides with a general formula AB2O4 (i.e. the so-called normal spinels) are important materials in industrial catalysis. They are thermally stable and maintain enhanced and sustained activities for a variety of industrially important reactions including decomposition of nitrous oxide [1], oxidation and dehydrogenation of hydrocarbons [2], low temperature methanol synthesis [3], oxidation of carbon monoxide and hydrocarbon [4], and oxidative dehydrogenation of butanes [5]. A major problem in the applications of this class of compound as catalyst, however, lies in their usually low specific surface area [6]. [Pg.691]

The hydroformylation of several olefins in the presence of Co2(CO)8 under high carbon monoxide pressure is reported. (S)-5-Methylheptanal (75%) and (S)-3-ethylhexanal (4.8%) were products from (- -)(S)-4-methyl-2-hexene with optical yields of 94 and 72%, respectively. The main products from ( -)(8)-2,2,5-trimethyl-3-heptene were (S)-3-ethyl-6,6-di-methylheptanal (56.6%) and (R)-4,7,7-trimethyloctanal (41.2%) obtained with optical yields of 74 and 62%, respectively. (R)(S)-3-Ethyl-6,6-dimethylheptanal (3.5% ) and (R)(S)-4,7,7-trimethyloctanal (93.5%) were formed from (R)(S)-3,6,6-trimethyl-l-heptene. (+/S)-l-Phenyl-3-methyl-1-pentene, under oxo conditions, was almost completely hydrogenated to (- -)(S)-l-phenyl-3-methylpentane with 100% optical yield. 3-(Methyl-d3)-l-butene-4-d3 gave 4-(methyl-d3)pentarwl-5-d3 (92%), 2-methyl-3-(methyl-d3)-butanal-4-d3 (3.7%), 3-(methyl-d3)pentanal-2-d2,3-d1 (4.3%) with practically 100% retention of deuterium. The reaction mechanism is discussed on the basis of these results. [Pg.292]

These data have been confirmed further by the results of the investigation of the hydroformylation of 3-(methyl-d3)-l-butene-4-d3 (I) under a high carbon monoxide partial pressure (125 atm) (11) (Scheme 1). 4-(Methyl-d3)pentanal-5-d3 (II) and 2-methyl-3-(methyl-d3)butanal-4-cf3 (III) were obtained in the proportion of 92% and 3.7%, respectively, with almost 100% retention of deuterium in the original position of the chain. 3-(Methyl-(23)pentanal-2-d2,3-(2i (IV) was 4.3% with practically 100% substitution of the hydrogen with deuterium on the tertiary carbon atom of the starting olefin (Scheme 1). These data are consistent with both Casey s and with our data for olefins with quaternary carbon atoms. [Pg.295]

CARBENE. The name quite generally used for the methylene radical, CH,. It is formed during a number of reactions. Thus the flash photochemical decomposition of ketene (CH2=C=0) has been shown to proceed in two stages. The first yields carbon monoxide and CHj. the latter then reacting with more ketene to form ethylene and carbon monoxide. Carbcne reacts by insertion into a C- H bond to form a C-CH, bond. Thus carbene generated from ketene reacts with propane to form, i-butane and isobutane. Carbene generated by pyrolysis uf diazomethane reacts with diethyl ether to form ethylpropyl ether and ethylisopropyl ether. [Pg.277]

Few chemicals have experienced as long and as successful a career us acetic acid, Acetic acid reluins its importance in (he production of vinyl and cellulose acetates Acetic acid is made industrially by oxidation of acetaldehyde or butane in air, or from methanol and carbon monoxide. [Pg.15]


See other pages where Butane carbon monoxide is mentioned: [Pg.455]    [Pg.392]    [Pg.262]    [Pg.2]    [Pg.544]    [Pg.13]    [Pg.78]    [Pg.239]    [Pg.23]    [Pg.109]    [Pg.972]    [Pg.125]    [Pg.251]    [Pg.392]    [Pg.2]    [Pg.29]    [Pg.108]    [Pg.296]    [Pg.171]    [Pg.296]    [Pg.1561]    [Pg.223]    [Pg.301]   


SEARCH



Butan Carbon

Butane carbon

© 2024 chempedia.info