Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene transformation

Figure 8.7 Symmetry operations for conrotatory and disrotatory modes of cyclobutene butadiene transformation. Figure 8.7 Symmetry operations for conrotatory and disrotatory modes of cyclobutene butadiene transformation.
Figure 8.9, State correlation diagram for cyclobutene a butadiene transformation. (a) Disrotatory mode (b) Conrotatory mode. Figure 8.9, State correlation diagram for cyclobutene a butadiene transformation. (a) Disrotatory mode (b) Conrotatory mode.
As an example, let us consider the electrocyclic reaction of cyclobutene to butadiene transformation. The cyclobutene ring can break up either in a conrotatory... [Pg.150]

Normally, cyclobutene - butadiene transformations occur at higher temperatures... [Pg.48]

S.6, Example Synthesis of 2-trimethylsilyloxy-13-butadiene. Transformation to a canonical model for the exploration of a ridge system... [Pg.284]

The correlation diagrams for the disrotatory and conrotatory pathway are constructed in the same way as in the case of cyclobutene-butadiene transformation. These are shown in Figures 2.7 and 2.8, respectively. [Pg.29]

A further well-known elect rocydie process is the interconversion of cyclohexa-1,3-dienes and hexa-l, 3,5-trienes, of which reaction (4.7) is the prototype. As in the cyclobutene-butadiene transformation, reaction will... [Pg.117]

Electi ocyclic reactions are examples of cases where ic-electiDn bonds transform to sigma ones [32,49,55]. A prototype is the cyclization of butadiene to cyclobutene (Fig. 8, lower panel). In this four electron system, phase inversion occurs if no new nodes are fomred along the reaction coordinate. Therefore, when the ring closure is disrotatory, the system is Hiickel type, and the reaction a phase-inverting one. If, however, the motion is conrotatory, a new node is formed along the reaction coordinate just as in the HCl + H system. The reaction is now Mdbius type, and phase preserving. This result, which is in line with the Woodward-Hoffmann rules and with Zimmerman s Mdbius-Huckel model [20], was obtained without consideration of nuclear symmetry. This conclusion was previously reached by Goddard [22,39]. [Pg.347]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

The cyclobutene-butadiene interconversion can serve as an example of the reasoning employed in construction of an orbital correlation diagram. For this reaction, the four n orbitals of butadiene are converted smoothly into the two n and two a orbitals of the ground state of cyclobutene. The analysis is done as shown in Fig. 11.3. The n orbitals of butadiene are ip2, 3, and ij/. For cyclobutene, the four orbitals are a, iz, a, and n. Each of the orbitals is classified with respect to the symmetiy elements that are maintained in the course of the transformation. The relevant symmetry features depend on the structure of the reacting system. The most common elements of symmetiy to be considered are planes of symmetiy and rotation axes. An orbital is classified as symmetric (5) if it is unchanged by reflection in a plane of symmetiy or by rotation about an axis of symmetiy. If the orbital changes sign (phase) at each lobe as a result of the symmetry operation, it is called antisymmetric (A). Proper MOs must be either symmetric or antisymmetric. If an orbital is not sufficiently symmetric to be either S or A, it must be adapted by eombination with other orbitals to meet this requirement. [Pg.609]

Figure 11.3 illustrates the classification of the MOs of butadiene and cyclobutene. There are two elements of symmetry that are common to both s-cw-butadiene and cyclobutene. These are a plane of symmetry and a twofold axis of rotation. The plane of symmetry is maintained during a disrotatory transformation of butadiene to cyclobutene. In the conrotatory transformation, the axis of rotation is maintained throughout the process. Therefore, to analyze the disrotatory process, the orbitals must be classified with respect to the plane of symmetry, and to analyze the conrotatory process, they must be classified with respect to the axis of rotation. [Pg.610]

Certain 1,5 diazabicyclo[3 3 0]oct-2-enes can be transformed unexpectedly into 4//-5,5-dihydro-l, 2 diazepines on heating [209] 1,5-Dipoles formed on heating of l,5-diazabicyclo[3 3 0]oct-2-enes [210] can be trapped with olefins to give [3+2] cycloadducts At elevated temperatures, they undergo a [3+2] cycloreversion Tins reaction sequence offers a simple route to dienes with interesting substitution patterns, for example, 1,1 bis(trifluoromethyl)-l,3-butadiene [211] The [3+2] cycloadducts that arise from the reaction of the 1,5 dipoles with acetylenes undergo... [Pg.868]

The Gabriel synthesis represents another indirect but highly valuable approach to amines. Trost has demonstrated a method for the asymmetric ring-opening of butadiene monoepoxide by use of one equivalent of phthalimide, 7t-allylpalladium chloride dimer, and the chiral bisphosphine 22 (Scheme 7.37). The dynamic kinetic asymmetric transformation proceeded through a putative achiral intermedi-... [Pg.252]

QCMB RAM SBR SEI SEM SERS SFL SHE SLI SNIFTIRS quartz crystal microbalance rechargeable alkaline manganese dioxide-zinc styrene-butadiene rubber solid electrolyte interphase scanning electron microscopy surface enhanced Raman spectroscopy sulfolane-based electrolyte standard hydrogen electrode starter-light-ignition subtractively normalized interfacial Fourier transform infrared... [Pg.604]

Synthesis of functionalized aryloxy 1,3-butadienes and their transformation to dienyl ethers via Diels-Alder cycloaddition reactions [136]... [Pg.84]

The reaction of crotonaldehyde and methyl vinyl ketone with thiophenol in the presence of anhydrous hydrogen chloride effects conjugate addition of thiophenol as well as acetal formation. The resulting j3-phenylthio thioacetals are converted to 1-phenylthio-and 2-phenylthio-1,3-butadiene, respectively, upon reaction with 2 equivalents of copper(I) trifluoromethanesulfonate (Table I). The copper(I)-induced heterolysis of carbon-sulfur bonds has also been used to effect pinacol-type rearrangements of bis(phenyl-thio)methyl carbinols. Thus the addition of bis(phenyl-thio)methyllithium to ketones and aldehydes followed by copper(I)-induced rearrangement results in a one-carbon ring expansion or chain-insertion transformation which gives a-phenylthio ketones. Monothioketals of 1,4-diketones are cyclized to 2,5-disubstituted furans by the action of copper(I) trifluoromethanesulfonate. ... [Pg.106]

Fourier transform isotopic ( C and D) studies of potential interstellar species - C4H (butadiynyl radical) and QH (hexatriynyl radical) - have also been carried out. The radical C4H was produced (10) by trapping of products from the vacuum UV photolysis of diacetylene (C4H2) or 1,3-butadiene (C4H6) in solid argon at 10 K (Shen et al., 1990). Similarly the radical C6H was obtained (11) by vacuum UV photolysis of matrix-isolated... [Pg.36]

Observations on the polymerization of readily polymerizable vinyl monomers such as styrene, vinyl chloride, and butadiene date back approximately to the first recorded isolation of the monomer in each case. Simon 2 reported in 1839 the conversion of styrene to a gelatinous mass, and Berthelot applied the term polymerization to the process in 1866. Bouchardat polymerized isoprene to a rubberlike substance. Depolymerization of a vinyl polymer to its monomer (and other products as well) by heating at elevated temperatures was frequently noted. Lemoine thought that these transformations of styrene could be likened to a reversible dissociation, a commonly held view. While the terms polymerization and depolymerization were quite generally applied in this sense, the constitution of the polymers was almost completely unknown. [Pg.20]

Some companies are successfully integrating chemo- and biocatalytic transformations in multi-step syntheses. An elegant example is the Lonza nicotinamide process mentioned earlier (.see Fig. 2.34). The raw material, 2-methylpentane-1,5-diamine, is produced by hydrogenation of 2-methylglutaronitrile, a byproduct of the manufacture of nylon-6,6 intermediates by hydrocyanation of butadiene. The process involves a zeolite-catalysed cyciization in the vapour phase, followed by palladium-catalysed dehydrogenation, vapour-pha.se ammoxidation with NH3/O2 over an oxide catalyst, and, finally, enzymatic hydrolysis of a nitrile to an amide. [Pg.54]

The hydrogenation of unsaturated polymers and copolymers in the presence of a catalyst offers a potentially useful method for improving and optimizing the mechanical and chemical resistance properties of diene type polymers and copolymers. Several studies have been published describing results of physical and chemical testing of saturated diene polymers such as polybutadiene and nitrile-butadiene rubber (1-5). These reports indicate that one of the ways to overcome the weaknesses of diene polymers, especially nitrile-butadiene rubber vulcanizate, is by the hydrogenation of carbon-carbon double bonds without the transformation of other functional unsaturation such as nitrile or styrene. [Pg.394]

In a concerted reaction, orbital and state symmetry is conserved throughout the course of the reaction. Thus a symmetric orbital in butadiene must transform into a symmetric orbital in cyclobutene and an antisymmetric orbital must transform into an antisymmetric orbital. In drawing the correlation diagram, molecular orbitals of one symmetry on one side of the diagram are connected to orbitals of the same symmetry on the other side, while observing the noncrossing rule. [Pg.508]


See other pages where Butadiene transformation is mentioned: [Pg.261]    [Pg.50]    [Pg.324]    [Pg.50]    [Pg.5831]    [Pg.26]    [Pg.362]    [Pg.261]    [Pg.50]    [Pg.324]    [Pg.50]    [Pg.5831]    [Pg.26]    [Pg.362]    [Pg.209]    [Pg.610]    [Pg.750]    [Pg.9]    [Pg.210]    [Pg.213]    [Pg.139]    [Pg.139]    [Pg.124]    [Pg.337]    [Pg.330]    [Pg.331]    [Pg.21]    [Pg.2]    [Pg.445]    [Pg.716]    [Pg.224]    [Pg.307]    [Pg.358]    [Pg.700]    [Pg.508]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



© 2024 chempedia.info