Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Brownian motion correlation function

We discuss the rotational dynamics of water molecules in terms of the time correlation functions, Ciit) = (P [cos 0 (it)]) (/ = 1, 2), where Pi is the /th Legendre polynomial, cos 0 (it) = U (0) U (it), u [, Is a unit vector along the water dipole (HOH bisector), and U2 is a unit vector along an OH bond. Infrared spectroscopy probes Ci(it), and deuterium NMR probes According to the Debye model (Brownian rotational motion), both... [Pg.491]

Zatsepin V. M. Time correlation functions of one-dimensional rotational Brownian motion in n-fold periodical potential. Theor. and Math. Phys. [Pg.283]

In the frame of the present review, we discussed different approaches for description of an overdamped Brownian motion based on the notion of integral relaxation time. As we have demonstrated, these approaches allow one to analytically derive exact time characteristics of one-dimensional Brownian diffusion for the case of time constant drift and diffusion coefficients in arbitrary potentials and for arbitrary noise intensity. The advantage of the use of integral relaxation times is that on one hand they may be calculated for a wide variety of desirable characteristics, such as transition probabilities, correlation functions, and different averages, and, on the other hand, they are naturally accessible from experiments. [Pg.431]

We should point out here the great analogy between and the friction coefficient studied in the Brownian motion problem of Section IV (see Eq. (242)) instead of having the time autocorrelation function of the force F , we now have the time correlation function between F and Fe. [Pg.266]

Photon correlation spectroscopy (PCS) has been used extensively for the sizing of submicrometer particles and is now the accepted technique in most sizing determinations. PCS is based on the Brownian motion that colloidal particles undergo, where they are in constant, random motion due to the bombardment of solvent (or gas) molecules surrounding them. The time dependence of the fluctuations in intensity of scattered light from particles undergoing Brownian motion is a function of the size of the particles. Smaller particles move more rapidly than larger ones and the amount of movement is defined by the diffusion coefficient or translational diffusion coefficient, which can be related to size by the Stokes-Einstein equation, as described by... [Pg.8]

A particular question of interest is whether the DNA torsional motions observed on the nanosecond time scale are overdamped, as predicted by simple Langevin theory, and as observed for Brownian motions on longer time scales, or instead are underdamped, so that damped oscillations appear in the observed correlation functions. A related question is whether the solvent water around the DNA exhibits a normal constant viscosity on the nanosecond time scale, or instead begins to exhibit viscoelastic behavior with a time-, or frequency-, dependent complex viscosity. In brief, are the predictions for... [Pg.140]

In general, fluctuations in any electron Hamiltonian terms, due to Brownian motions, can induce relaxation. Fluctuations of anisotropic g, ZFS, or anisotropic A tensors may provide relaxation mechanisms. The g tensor is in fact introduced to describe the interaction energy between the magnetic field and the electron spin, in the presence of spin orbit coupling, which also causes static ZFS in S > 1/2 systems. The A tensor describes the hyperfine coupling of the unpaired electron(s) with the metal nuclear-spin. Stochastic fluctuations can arise from molecular reorientation (with correlation time Tji) and/or from molecular distortions, e.g., due to collisions (with correlation time t ) (18), the latter mechanism being usually dominant. The electron relaxation time is obtained (15) as a function of the squared anisotropies of the tensors and of the correlation time, with a field dependence due to the term x /(l + x ). [Pg.114]

In the previous section, the phenomenological description of Brownian motion was presented. The Langevin analysis leads to a velocity autocorrelation function which decays exponentially with time. This is characteristic of a Markovian process, as Doobs has shown (see ref. 490). Since it is known heyond question that the velocity autocorrelation function is far from such an exponential function, the effect that the solvent structure has on the progress of a chemical reaction cannot be assessed very reliably by means of phenomenological Langevin description. Since the velocity of a solute is correlated with its velocity a while before, a description which fails to consider solute and solvent velocities can hardly be satisfactory. Necessarily, the analysis requires a modification of the Langevin or Fokker—Plank description. In this section, some comments are made on this new and exciting area of research. [Pg.332]

Both Pecora (16) and Komarov and Fisher (17) adapted van Hove s space-time correlation function approach for neutron scattering (18) to the light-scattering problem to calculate the spectral distribution of the light scattered from a solution. Using a molecular analysis, Pecora assumed the scattering particles to be undergoing Brownian motion, and predicted a Lorentzian line shape for the spectral distribution of the... [Pg.33]

Photon Correlation. Particles suspended in a fluid undergo Brownian motion due to collisions with the liquid molecules. This random motion results in scattering and Doppler broadening of the frequency of the scattered light. Experimentally, it is more accurate to measure the autocorrelation function in the time domain than measuring the power spectrum in the frequency domain. The normalized electric field autocorrelation function g(t) for a suspension of monodisperse particles or droplets is given by ... [Pg.134]

We now turn to quantum Brownian motion as described by the generalized Langevin equation (22), with the symmetrized correlation function of the random force as given by Eq. (20). [Pg.284]

For a particle evolving in a thermal bath, we focused our interest on the particle displacement, a dynamic variable which does not equilibrate with the bath, even at large times. As far as this variable is concerned, the equilibrium FDT does not hold. We showed how one can instead write a modified FDT relating the displacement response and correlation functions, provided that one introduces an effective temperature, associated with this dynamical variable. Except in the classical limit, the effective temperature is not simply proportional to the bath temperature, so that the FDT violation cannot be reduced to a simple rescaling of the latter. In the classical limit and at large times, the fluctuation-dissipation ratio T/Teff, which is equal to 1 /2 for standard Brownian motion, is a self-similar function of the ratio of the observation time to the waiting time when the diffusion is anomalous. [Pg.320]

The random Brownian motion of colloidal particles creates temporal fluctuations in the intensity of the scattered light. The fluctuating intensity signal cannot be readily interpreted because it contains too much detail. Instead, the fluctuations are commonly quantified by constructing an intensity autocorrelation function (ACF) [41J. For this reason, DLS often goes by the name photon correlation spectroscopy (PCS). [Pg.210]

The evolution of the experimental anisotropy as a function of the temperature is shown in Fig. 8. As expected, the decay rate increases as the temperature increases. For the highest temperature (t > 50 °C), it can be noticed that the anisotropy decays from a value close to the fundamental anisotropy of DMA to almost zero in the time window of the experiment (about 60 ns). This means that the initial orientation of a backbone segment is almost completely lost within this time. This possibiUty to directly check the amplitude of motions associated with the involved relaxation is a very useful advantage of FAD. In particular, it indicates that in the temperature range 50 °C 80 °C, we sample continuously and almost completely the elementary brownian motion in polymer melts. Processes too fast to be observed by this technique involve only very small angles of rotation and cannot be associated with backbone rearrangements. On the other hand, the processes too slow to be sampled concern only a very low residual orientational correlation, i.e. they are important only on a scale much larger than the size of conformational jumps. [Pg.114]

Typical correlation functions for linear Brownian motion desoibed by a Langevin equation include, for free motion... [Pg.33]

Random Motion of Objects vrith Inertia.—It has not so far bemi necessary to consider any explicit time-dependence of the forces, other than E, acting on the moving charges. Further progress nec essarily involves considering these forces and the inertia of the charge carriers. In new of the cardinal role of the momentum in dynamical discnissions, it will occasionally be convenient to discniss the momentum auto-correlation function. The latter is indeed well defined even for free-Brownian motion, for which the porition correlation function has no interest. [Pg.232]

Dynamically raised processes in the dispersion, such as Brownian molecular motion, cause variations in the intensities of the scattered light with time, which is measured by PCS. Smaller the particle, higher the fluctuations by Brownian motion. Thus, a correlation between the different intensities measured is only possible for short time intervals. In a monodisperse system following first-order kinetics, the autocorrelation function decreases rather fast. In a half logarithmic plot of the auto correlation function, the slope of the graph enables the calculation of the hydrodynamic radius by the Stokes-Einstein equation. With the commercial PCS devices the z-average is determined, which corresponds to the hydrodynamic radius. [Pg.1123]


See other pages where Brownian motion correlation function is mentioned: [Pg.248]    [Pg.13]    [Pg.102]    [Pg.462]    [Pg.222]    [Pg.81]    [Pg.133]    [Pg.3]    [Pg.107]    [Pg.248]    [Pg.136]    [Pg.162]    [Pg.430]    [Pg.376]    [Pg.284]    [Pg.198]    [Pg.27]    [Pg.236]    [Pg.329]    [Pg.330]    [Pg.66]    [Pg.50]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]

See also in sourсe #XX -- [ Pg.288 ]

See also in sourсe #XX -- [ Pg.28 , Pg.289 ]




SEARCH



Brownian motion

Brownian motion dipole correlation function

Brownian motion function

Brownian motion velocity correlation function

Correlated motion

Correlation correlated motion

Motion, correlation

© 2024 chempedia.info