Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boundary layer, surface

For most adhesive bonded metal joints that must see outdoor service, corrosive environments are a more serious problem than the influence of moisture. The degradation mechanism is corrosion of the metal interface, resulting in a weak boundary layer. Surface preparation methods and primers that make the adherend less corrosive are commonly employed to retard the degradation of adhesive joints in these environments. [Pg.333]

The convective heat transfer coefficient generally depends on conditions in the boundary layer, surface geometry, fluid motion, and thermodynamic and transport properties of the fluid. A thorough examination of the heat transfer coefficient theory and many examples are given by Bird et al [15], Kays and Crawford [71], Middleman [102] and Incropera and DeWitt [60]. [Pg.593]

Fig. 1. Which of the three commonly used models best describes the mass transfer across the aqueous boundary layer surface renewal, turbulent diffusion or molecular diffusion ... Fig. 1. Which of the three commonly used models best describes the mass transfer across the aqueous boundary layer surface renewal, turbulent diffusion or molecular diffusion ...
The rainwater is divided into infiltration, surface runoff and evaporation at the boundary layer surface. Preferably, the bound layers should be impervious and redirect rainwater as surface runoff so that infiltration into the pavement is minimized. However, due to deformities the boundary layers may be an important pathway for water entering the unbound layers. The infiltration capacity depends on the permeability of the pavement and underlying construction layers and presence of cracks and other local deformities of the pavement [13]. If no deformities are present the infiltration capacity for asphalt is typically in the... [Pg.308]

The quantity on the right-hand side identifies the rate at which particles have been carried into the boundary layer over the membrane length 0 to z through the top boundary layer surface due to the filtration from the bulk suspension the left-hand side reflects this via the excess particle... [Pg.578]

The rate of physical adsorption may be determined by the gas kinetic surface collision frequency as modified by the variation of sticking probability with surface coverage—as in the kinetic derivation of the Langmuir equation (Section XVII-3A)—and should then be very large unless the gas pressure is small. Alternatively, the rate may be governed by boundary layer diffusion, a slower process in general. Such aspects are mentioned in Ref. 146. [Pg.661]

A quantitative treatment for the depletive adsorption of iogenic species on semiconductors is that known as the boundary layer theory [84,184], in which it is assumed that, as a result of adsorption, a charged layer is formed. Doublelayer theory is applied, and it turns out that the change in surface potential due to adsorption of such a species is proportional to the square of the amount adsorbed. The important point is that very little adsorption, e.g., a 0 of about 0.003, can produce a volt or more potential change. See Ref. 185 for a review. [Pg.718]

Besides the expressions for a surface derived from the van der Waals surface (see also the CPK model in Section 2.11.2.4), another model has been established to generate molecular surfaces. It is based on the molecular distribution of electronic density. The definition of a Limiting value of the electronic density, the so-called isovalue, results in a boundary layer (isoplane) [187]. Each point on this surface has an identical electronic density value. A typical standard value is about 0.002 au (atomic unit) to represent electronic density surfaces. [Pg.129]

Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors. Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors.
Seldom is the temperature difference across the wall thickness of an item of equipment known. Siace large temperature gradients may occur ia the boundary layers adjacent to the metal surfaces, the temperature difference across the wall should not be estimated from the temperatures of the fluids on each side of the wall, but from the heat flux usiag equation 27... [Pg.86]

Third, design constraints are imposed by the requirement for controlled cooling rates for NO reduction. The 1.5—2 s residence time required increases furnace volume and surface area. The physical processes involved in NO control, including the kinetics of NO chemistry, radiative heat transfer and gas cooling rates, fluid dynamics and boundary layer effects in the boiler, and final combustion of fuel-rich MHD generator exhaust gases, must be considered. [Pg.435]

The phenomenon of concentration polarization, which is observed frequently in membrane separation processes, can be described in mathematical terms, as shown in Figure 30 (71). The usual model, which is weU founded in fluid hydrodynamics, assumes the bulk solution to be turbulent, but adjacent to the membrane surface there exists a stagnant laminar boundary layer of thickness (5) typically 50—200 p.m, in which there is no turbulent mixing. The concentration of the macromolecules in the bulk solution concentration is c,. and the concentration of macromolecules at the membrane surface is c. [Pg.78]

At any point within the boundary layer, the convective flux of the macromolecule solute to the membrane surface is given by the volume flux,/ of the solution multipfled by the concentration of retained solute, c. At steady state, this convective flux within the laminar boundary layer is balanced by the diffusive flux of retained solute in the opposite direction. This balance can be expressed by equation 1 ... [Pg.79]

A thorough description of the internal flow stmcture inside a swid atomizer requires information on velocity and pressure distributions. Unfortunately, this information is still not completely available as of this writing (1996). Useful iasights on the boundary layer flow through the swid chamber are available (9—11). Because of the existence of an air core, the flow stmcture iaside a swid atomizer is difficult to analyze because it iavolves the solution of a free-surface problem. If the location and surface pressure of the Hquid boundary are known, however, the equations of motion of the Hquid phase can be appHed to reveal the detailed distributions of the pressure and velocity. [Pg.329]

The concentration boundary layer forms because of the convective transport of solutes toward the membrane due to the viscous drag exerted by the flux. A diffusive back-transport is produced by the concentration gradient between the membranes surface and the bulk. At equiUbrium the two transport mechanisms are equal to each other. Solving the equations leads to an expression of the flux ... [Pg.296]

Fig. 1. General dialysis is a process by which dissolved solutes move through a membrane in response to a difference in concentration and in the absence of differences in pressure, temperature, and electrical potential. The rate of mass transport or solute flux, ( ), is directly proportional to the difference in concentration at the membrane surfaces (eq. 1). Boundary layer effects, the difference between local and wall concentrations, are important in most... Fig. 1. General dialysis is a process by which dissolved solutes move through a membrane in response to a difference in concentration and in the absence of differences in pressure, temperature, and electrical potential. The rate of mass transport or solute flux, ( ), is directly proportional to the difference in concentration at the membrane surfaces (eq. 1). Boundary layer effects, the difference between local and wall concentrations, are important in most...
Boundary layer flows are a special class of flows in which the flow far from the surface of an object is inviscid, and the effects of viscosity are manifest only in a thin region near the surface where steep velocity gradients occur to satisfy the no-slip condition at the solid surface. The thin layer where the velocity decreases from the inviscid, potential flow velocity to zero (relative velocity) at the sohd surface is called the boundary layer The thickness of the boundary layer is indefinite because the velocity asymptotically approaches the free-stream velocity at the outer edge. The boundaiy layer thickness is conventionally t en to be the distance for which the velocity equals 0.99 times the free-stream velocity. The boundary layer may be either laminar or turbulent. Particularly in the former case, the equations of motion may be simphfied by scaling arguments. Schhchting Boundary Layer Theory, 8th ed., McGraw-HiU, New York, 1987) is the most comprehensive source for information on boundary layer flows. [Pg.666]

Cylindrical Boundary Layer Laminar boundary layers on cylindrical surfaces, with flow parallel to the cylinder axis, are described by Glauert and LighthiU Proc. R. Soc. [London], 230A, 188-203 [1955]), Jaffe and Okamura (Z. Angety. Math. Phys., 19, 564—574 [1968]) and Stewartson ((J. Appl Math., 13, 113-122 [1955]). For a turbulent boundaiy layer, the total drag may be estimated as... [Pg.666]


See other pages where Boundary layer, surface is mentioned: [Pg.158]    [Pg.203]    [Pg.874]    [Pg.44]    [Pg.122]    [Pg.90]    [Pg.953]    [Pg.939]    [Pg.158]    [Pg.203]    [Pg.874]    [Pg.44]    [Pg.122]    [Pg.90]    [Pg.953]    [Pg.939]    [Pg.66]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.409]    [Pg.90]    [Pg.91]    [Pg.91]    [Pg.91]    [Pg.91]    [Pg.79]    [Pg.100]    [Pg.259]    [Pg.523]    [Pg.296]    [Pg.296]    [Pg.310]    [Pg.521]    [Pg.527]    [Pg.31]    [Pg.32]    [Pg.36]    [Pg.504]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Boundary layer flows continuous flat surface

Boundary layers surface shear stress

Boundary surfaces

Diffusion Boundary Layer Near the Surface of a Drop (Bubble)

Diffusion Boundary Layer Near the Surface of a Particle

Graphite surface boundary layer controlled

Hydrodynamic boundary layer near strongly retarded bubble surface

Layered surfaces

Surface Force Boundary Layer Approximation

Surface Force Boundary Layer Approximation SFBLA)

Surface layers

Thermal boundary layer constant surface heat flux

© 2024 chempedia.info