Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron trifluoride etherate initiation

Certain classes of monomers do not shrink and may even expand on polymerization [4], One of the first examples reported was a spiro orthoester that was polymerized to a polymer with an estimated molecular weight of 25,000 using a boron trifluoride etherate initiator [5], In this case, there was no measurable shrinkage on polymerization. The monomer is made by reacting ethylene oxide with a-butyrolactone ... [Pg.190]

The most important reaction with Lewis acids such as boron trifluoride etherate is polymerization (Scheme 30) (72MI50601). Other Lewis acids have been used SnCL, Bu 2A1C1, Bu sAl, Et2Zn, SO3, PFs, TiCU, AICI3, Pd(II) and Pt(II) salts. Trialkylaluminum, dialkylzinc and other alkyl metal initiators may partially hydrolyze to catalyze the polymerization by an anionic mechanism rather than the cationic one illustrated in Scheme 30. Cyclic dimers and trimers are often products of cationic polymerization reactions, and desulfurization of the monomer may occur. Polymerization of optically active thiiranes yields optically active polymers (75MI50600). [Pg.146]

It was projected that compound 13 could be stereoselectively linked, through its free phenolic hydroxyl group, with the anomeric carbon of intermediate 12 under suitably acidic conditions (see Scheme 8). Gratifyingly, the action of boron trifluoride etherate on a mixture of 12 and 13 in CH2CI2 at -50 °C induces a completely stereoselective glycosidation reaction, providing the desired a-ano-mer 48 in an excellent yield of 95 % from 46. It is presumed that boron trifluoride initiates cleavage of the anomeric trichloroacetimi-... [Pg.537]

The polymerization of 1,3,3-trimethyl-2,7-dioxabicyclo[2.2.1 Jheptane 35 was carried out in methylene chloride, toluene, and 1-nitropropane at temperatures between —78 and 0 °C32l Boron trifluoride etherate, triethyloxonium tetrafluoro-borate, antimony pentachloride, and iodine were used as initiators. Irrespective of the solvents and initiators employed, the products obtained at 0 °C were white powders with melting points of 50—55 °C, while those obtained at tower temperatures were sirups. The number average molecular weight of the unfractionated products ranged from 400 to 600. The molecular weight distribution of the oligomers prepared at 0 °C was broad, in contrast to the relatively narrow distribution of those obtained at -40 °C. [Pg.60]

Note It is reported that the use of chlorobenzene as solvent is essential when the reagent is to be used to detect aromatic amines [1]. In the case of steroids, penicillins, diuretics and alkaloids the reaction should be accelerated and intensified by spraying afterwards with dimethylsulfoxide (DMSO) or dimethylformamide (DMF), indeed this step makes it possible to detect some substances when this would not otherwise be possible [5,9-11] this latter treatment can, like heating, cause color changes [5,9]. Penicillins and diuretics only exhibit weak reactions if not treated afterwards with DMF [10, 11]. Steroids alone also yield colored derivatives with DMSO [9]. Tlreatment afterwards with diluted sulfuric acid (c = 2 mol/L) also leads to an improvement in detection sensitivity in the case of a range of alkaloids. In the case of pyrrolizidine alkaloids it is possible to use o-chloranil as an alternative detection reagent however, in this case it is recommended that the plate be treated afterwards with a solution of 2 g 4-(dimethyl-amino)-benzaldehyde and 2 ml boron trifluoride etherate in 100 ml anhydrous ethanol because otherwise the colors initially produced with o-chloranil rapidly fade [12]. [Pg.103]

A recent total synthesis of tubulysin U and V makes use of a one-pot, three-component reaction to form 2-acyloxymethylthiazoles <06AG(E)7235>. Treatment of isonitrile 25, Boc-protected Z-homovaline aldehyde 26, and thioacetic acid with boron trifluoride etherate gives a 3 1 mixture of two diastereomers 30. The reaction pathway involves transacylation of the initial adduct 27 to give thioamide 28. This amide is in equilibrium with its mercaptoimine tautomer 29, which undergoes intramolecular Michael addition followed by elimination of dimethylamine to afford thiazole 30. The major diastereomer serves as an intermediate in the synthesis of tubulysin U and V. [Pg.244]

Another differential reaction is copolymerization. An equi-molar mixture of styrene and methyl methacrylate gives copolymers of different composition depending on the initiator. The radical chains started by benzoyl peroxide are 51 % polystyrene, the cationic chains from stannic chloride or boron trifluoride etherate are 100% polystyrene, and the anionic chains from sodium or potassium are more than 99 % polymethyl methacrylate.444 The radicals attack either monomer indiscriminately, the carbanions prefer methyl methacrylate and the carbonium ions prefer styrene. As can be seen from the data of Table XIV, the reactivity of a radical varies considerably with its structure, and it is worth considering whether this variability would be enough to make a radical derived from sodium or potassium give 99 % polymethyl methacrylate.446 If so, the alkali metal intitiated polymerization would not need to be a carbanionic chain reaction. However, the polymer initiated by triphenylmethyl sodium is also about 99% polymethyl methacrylate, whereas tert-butyl peroxide and >-chlorobenzoyl peroxide give 49 to 51 % styrene in the initial polymer.445... [Pg.244]

Upon initial addition of boron trifluoride etherate, a slightly endothermic reaction takes place. [Pg.96]

Which of the following could be used to initiate the polymerization of isobutylene (a) sulfuric acid, (b) boron trifluoride etherate, (c) water, or (d) butyllithium ... [Pg.169]

High polymers are generally obtained on treatment with Lewis acids at low temperatures in an inert solvent. Boron trifluoride and boron trifluoride etherate are the most widely used catalysts, but a small amount of water must be present, which is termed a promoter triethylaluminum and triisobutylaluminum are also useful initiators and are generally used with addition of water. Alkylating agents, such as ethyl triflate, triethyloxonium tetrafluoro-borate and hexafluorophosphite, and 2-methyl-l,3-dioxolenium perchlorate, are also effective initiators (76MI51301,72MI51304). [Pg.382]

At low temperatures in inert solvents (such as methylene dichloride) a controlled polymerization can be effected using various acids and alkylating agents. These initiators include boron trifluoride etherate, triethylaluminum, trityl hexachloroantimonate, triethylam-monium hexachloroantimonate, diethyloxonium hexafluoroantimonate, p-toluenesulfonic acid and diethylzinc or cadmium-1,2-dioI complexes. Crystalline, high molecular weight... [Pg.382]

The synthesis of AMO involves treatment of 3,3-bis(chloromethyl) oxetane (BCMO) with sodium azide in the DMF medium at 85 °C for 24 h. Similarly, AMMO which is a monofunctional analog of AMO is synthesized by the azidation of chloro/tosylate product of 3-hydroxymethyl-3-methyl oxetane (HyMMO) with sodium azide in DMF medium at elevated temperatures. These energetic monomers are readily polymerized to liquid curable prepolymers with the help of boron trifluoride etherate/l,4-butanediol initiator system and the outlines of synthesis [147-150] of poly(BAMO) [Structure... [Pg.263]

Methyl Ethers. Methylation of sucrose is generally conducted under basic conditions. Etherification occurs initially at the most acidic hydroxyl groups, HO-2, HO-T, and HO-3f, followed by the least hindered groups, HO-6 and HO-6. Several reagents have found use in the methylation of sucrose, including dimethyl sulfate—sodium hydroxide (18,19), methyl iodide—silver oxide—acetone, methyl iodide—sodium hydride in N, N- dimethyl form amide (DMF), and diazomethane—boron trifluoride etherate (20). The last reagent is particularly useful for compounds where mild conditions are necessary to prevent acyl migration (20). [Pg.32]

In the search for a reactive functional group which could be substituted on the acetylacetonate ring, chloromethylation of these chelates was attempted. The initially formed products were too reactive to be characterized directly. Treatment of rhodium acetylacetonate with chloromethyl methyl ether in the presence of boron trifluoride etherate afforded a solution of a very reactive species, apparently the chloromethyl chelate (XXX) (26). Hydrolytic workup of this intermediate yielded a polymeric mixture of rhodium chelates, but these did not contain chlorine On the basis of evidence discussed later on electrophilic cleavage of carbon from metal chelate rings and on the basis of their NMR spectra, these polymers may be of the type shown below. Reaction of the intermediate with dry ethanol afforded an impure chelate which is apparently the trisethyl ether (XXXI). Treatment of the reactive intermediate with other nucleophiles gave intractable mixtures. [Pg.91]

Fig. 3. Polymerization rate and initial initiator concentration styrene-boron trifluoride etherate-l,2-dichloroethane [M]0 = 1.72 mole/1, 0° C. 0.25 KV/cm, O 0 KV/cm. Reproduced, -with permission, from Sakurada, Ise, and Hayashi ... Fig. 3. Polymerization rate and initial initiator concentration styrene-boron trifluoride etherate-l,2-dichloroethane [M]0 = 1.72 mole/1, 0° C. 0.25 KV/cm, O 0 KV/cm. Reproduced, -with permission, from Sakurada, Ise, and Hayashi ...
The field-accelerating effect (RPEIRPI ) was found to be independent of the concentrations of monomer and initiator (7, 9, 10, 12) with an exceptional case of a-methylstyrene-boron trifluoride etherate-l,2-di-chloroethane (14). Therefore, as a first approximation, we can conclude... [Pg.356]

The oxidative rearrangement of chalcones is a valuable route to isoflavones which has been thoroughly investigated. Initially, the conversion was achieved in two distinct steps. Epoxidation of a 2 -benzyloxychalcone, carried out by conventional techniques, is followed by treatment with a Lewis acid, such as boron trifluoride etherate, which brings about the rearrangement. [Pg.824]

The reaction of 3-(3,4-dimethoxyphenyl)propanoic acid with thallium(III) trifluoroace-tate in the presence of boron trifluoride etherate leads to a mixture of the dihydrocoumarin (574) and the spirolactone (572) (78JOC3632). It is suggested that these products arise through an initial one-electron oxidation to the radical cation, the fate of which may vary. Thus, intramolecular reaction with the carboxyl group gives the radical (571) and eventually the spirolactone. Alternatively, capture of the radical ion by solvent and further oxidation affords the radical (573), whereupon an intramolecular Michael addition to the carboxyl group and aromatization lead to the dihydrocoumarin (Scheme 218) (81JA6856). [Pg.848]

Rozenberg et al. (24) have also studied the kinetics of polymerization of THF initiated by triethyl oxonium tetrafluoroborate. They generated their catalyst in situ from epichlorohydrin and the boron trifluoride-ether cofnplex and carried out their polymerizations in bulk and in... [Pg.560]

Diazo ketone cyclizathn. Some years ago Mander and his group1 demonstrated that the protonated diazomethylcarbonyl group can initiate cyclizations in unsaturatcd systems. In the case of phenolic diazo ketones, formation of spirodienones can predominate over competing side reactions (dienone-phenol rearrangement). Tetra-fluoroboric acid or boron trifluoride etherate can be used, but trifluoroacetic acid is usually the acid of choice. [Pg.621]

Allyloxy-l,2,3,6-tetrahydropyridine 241 undergoes Claisen rearrangement in cymene to give 4-allyl-3-oxo-piper-idine 242. The boron trifluoride etherate-mediated Claisen rearrangement gives only the 2-allyl isomer 244 due to the initial isomerization of tetrahydropyridine 241 into 1,2,3,4-tetrahydropyridine 243 by the Lewis acid (Scheme 61) <1999S1814>. [Pg.206]

One mechanistic possibility for this thioacetalation reaction invokes furanoside ring-opening of 17, initiated by complexation with boron trifluoride etherate (Scheme 12.9). Oxonium ion 28 could then get intercepted by the ethanethiol to produce 29. After further complexation with BF3, in the manner shown, thionium ion formation can again occur to give 30, which can then engage in yet another nucleophilic addition with the ethanethiol to produce 31 after protonation. [Pg.254]


See other pages where Boron trifluoride etherate initiation is mentioned: [Pg.352]    [Pg.32]    [Pg.335]    [Pg.110]    [Pg.244]    [Pg.413]    [Pg.159]    [Pg.180]    [Pg.355]    [Pg.356]    [Pg.626]    [Pg.606]    [Pg.146]    [Pg.1080]    [Pg.235]    [Pg.352]    [Pg.82]    [Pg.388]    [Pg.336]    [Pg.155]    [Pg.1388]    [Pg.336]    [Pg.797]    [Pg.14]   


SEARCH



Boron trifluoride

Boron trifluoride etherate

Boron trifluoride etherate initiator

Boron trifluoride, initiator

Ethers boron trifluoride etherate

© 2024 chempedia.info