Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Blue-coloured solution

HC1, was sonicated for similar durations of 10, 20 and 30 min. The blue coloured solution changed again to green, besides, the turbidity and conductance also gradually increased in sonicated solutions. The turbidity increased remarkably after about 15 min, even when sonication was stopped. (Table 9.5c). [Pg.233]

To liquid ammonia (400 ml) (1) held at — 70 °C is added with brisk stirring o-xylene (53 g, 0.5 mol) followed by small pieces of sodium metal (23 g, lg-atom) (2). Stirring is continued until all the sodium has dissolved and a blue coloured solution is obtained. Dry methanol (32 ml, 1 mol) is cautiously added dropwise at — 70 °C, when a vigorous reaction ensues. When the solution is colourless the ammonia is allowed to evaporate, and water cautiously added. The organic layer is separated (3), dried and distilled to give 1,2-dimethylcyclohexa-1,4-diene (49g, 92.5%), b.p. 141.5-143°C (4). [Pg.1116]

The chromium(II) (or chromous) ion (Cr2+) is derived from chromium(II) oxide CrO. These ions form blue coloured solutions. Chromium(II) ions are rather unstable, as they are strong reducing agents - they decompose even water slowly with the formation of hydrogen. Atmospheric oxygen oxidizes them readily to chromium(III) ions. As they are only rarely encountered in inorganic qualitative analysis, they will not be dealt with here. [Pg.255]

Cobaltous bromide (6H2O) [85017-77-2 (XH2O), 7789-43-7 (anhydrous)] M 326.9 (6H2O), m 47 (dec), b 100 (dec), dj" 4.9. Crystallise it from water (ImL/g) by partial evaporation in a desiccator. The anhydrous salt is soluble in EtOH, Me2CO, MeOAc to form blue-coloured solutions. [Glemser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1517 1965.]... [Pg.460]

A 1 cm cell is filled with the blue-coloured solution and the absorbance at 720 nm measured against distilled water as a blank. From a calibration curve previously prepared with a series of dipotassium hydrogen phosphate solutions, the amount of phosphorus in the blue coloured solution is found in mg of phosphorus per litre. [Pg.265]

The alkali metals have the interesting property of dissolving in some non-aqueous solvents, notably liquid ammonia, to give clear coloured solutions which are excellent reducing agents and are often used as such in organic chemistry. Sodium (for example) forms an intensely blue solution in liquid ammonia and here the outer (3s) electron of each sodium atom is believed to become associated with the solvent ammonia in some way, i.e. the system is Na (solvent) + e" (sohem). [Pg.126]

Addition of hydrogen peroxide to a solution of a dichromate yields the blue colour of "peroxochromic acid. This is a test for soluble chromates and dichromates. [Pg.380]

B) Preparation of the Cuprous Solution, Add 85 ml. of concentrated ammonia solution (d, o-o88) to a solution of 50 g. of crystalline copper sulphate in 200 ml. of water, and cool to 10 . Dissolve 14 5 g. of hydroxylamine hydrochloride (or 17-4 g. of the sulphate) in 50 ml. of water, cool to 10 , and add a solution of 9 g. of sodium hydroxide in 30 ml. of water. Without delay add this hydroxylamine solution with stirring to the copper solution, which will be immediately reduced, but will retain a blue colour. [Pg.200]

To 2 ml. of the ester in a test-tube add slightly more than the same volume of a cold saturated aqueous copper acetate solution. The blue colour of the latter turns immediately to a pale green. Now shake the tube vigorously in order to produce an emulsion of the ester in the aqueous layer. Scratch the sides of the tube with a rod, and shake vigorously as before. Crystallisation may be delayed for about 5 minutes, but, when once started, rapidly gives a copious precipitate... [Pg.268]

Copper salt, (a) Add aqueous copper acetate solution to an aqueous solution of glycine. Note the formation of a blue colour which is considerably deeper than the colour of the original copper acetate solution. On heating the solution, blue needles of the copper salt usually separate. [Pg.382]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

Cuprous bromide. The solid salt may be prepared by dissolving 150 g. of copper sulphate crystals and 87 5 g. of sodium bromide dihydrate in 500 ml. of warm water, and then adding 38 g. of powdered sodium sulphite over a period of 5-10 minutes to the stirred solution. If the blue colour is not completely discharged, a little more sodium sulphite should be added. The mixture is then cooled, the precipitate is collected in a Buchner funnel, washed twice with water containing a little dissolved sulphurous acid, pressed with a glass stopper to remove most of the liquid, and then dried in an evaporating dish or in an air oven at 100 120°. The yield is about 80 g. [Pg.191]

Dissolve 20 g, (19 -6 ml.) of anihne in a mixture of 55 ml. of concentrated hydrochloric acid (1) and 55 ml. of water contained in a 350 ml, conical flask. Place a thermometer in the solution and immerse the flask in a bath of crushed ice (2) cool until the temperature of the stirred solution falls below 5°, Dissolve 16 g. of sodium nitrite in 75 ml. of water and chUl the solution by immersion in the ice bath add the sodium nitrite solution (3) in small volumes (2-3 ml. at a time) to the cold anihne hydrochloride solution, and keep the latter weh stirred with the thermometer. Heat is evolved by the reaction. The temperature should not be allowed to rise above 10° (add a few grams of ice to the reaction mixture if necessary) otherwise appreciable decomposition of the diazonium compound and of nitrous acid wih occur. Add the last 5 per cent, of the sodium nitrite solution more slowly (say, about 1 ml. at a time) and, after stirring for 3-4 minutes, test a drop of the solution diluted with 3-4 drops of water with potassium iodide - starch paper (4) if no immediate blue colour... [Pg.598]

It is advisable to test the potassium iodide - starch pap>er with acidified sodium nitrite solution the commercial test paper is, particularly if it has been kept for a considerable period, sometimes almost useless. The solution must contain an excess of acid at all times, i.e., it must give a blue colour on Congo rod paper. [Pg.599]

Method 1. Prepare a solution of cuprous bromide by refluxing 31-5 g. of erystallised eopper sulphate, 10 g. of elean eopper turnings, 77 g. of crystallised sodium bromide, 15 g. (8-2 ml.) of concentrated sulphuric acid and 500 ml. of water contained in a 2 5 litre round-bottomed flask over a flame for 3-4 hours until the solution acquires a yellowish colour if the blue colour is not discharged, add a few grams of sodium bisulphite to complete the reduction. [Pg.602]

Dissolve 46-5 g. (45-5 ml.) of aniUne in a mixture of 126 ml. of concentrated hydrochloric acid and 126 ml. of water contained in a 1-htre beaker. Cool to 0-5° in a bath of ice and salt, and add a solution of 36-5 g. of sodium nitrite in 75 ml. of water in small portions stir vigorously with a thermometer (1) and maintain the temperature below 10°, but preferably at about 5° by the addition of a httle crushed ice if necessary. The diazotisation is complete when a drop of the solution diluted with 3-4 drops of water gives an immediate blue colouration with potassium iodide - starch paper the test should be performed 3-4 minutes after the last addition of the nitrite solution. Prepare a solution of 76 g. of sodium fluoborate (2) in 150 ml. of water, cool, and add the chilled solution slowly to the diazonium salt solution the latter must be kept well stirred (1) and the temperature controlled so that it is below 10°. Allow to stand for 10 minutes with frequent stirring. Filter... [Pg.609]

The special reducing agent (a solution containing cupro-ammonia ions) is first prepared. Dissolve 63 g. of crystallised copper sulphate in 250 ml. of water in a 1-Utre heaker, add 100 ml. of concentrated ammonium hydroxide solution (sp. gr. 0-88), and cool the solution to 10°. Dissolve 17 8 g. of hydroxylammonium chloride or 21 g. of hydroxylammonium sulphate in 60 ml. of water, cool to 10°, and add 42 -5 ml. of QN sodium hydroxide solution if the resulting solution of tydroxylamine is not clear, filter it at the pump. Without delay add the hydroxylamine solution, with stirring, to the ammoniacal cupric sulphate solution. Reduction occurs at once, a gas is evolved, and the solution assumes a pale blue colour. Protect the reducing agent from the air if it is not used immediately. [Pg.617]

To recover the free base, dissolve the hydrochloride in the minimum volume of boiling alcohol, add concentrated ammonia solution dropwise until a clear solution results and the blue colour has become fight brown. Add water carefully untU a cloudiness appears, warm on a water bath untU the cloudiness just disappears, and allow to cool. Yellow crystals of p-amino-azobenzene separate on coofing. [Pg.627]

Dissolve 1 g. of the secondary amine in 3-5 ml. of dilute hydrochloric acid or of alcohol (in the latter case, add 1 ml. of concentrated hydrochloric acid). Cool to about 5° and add 4-5 ml. of 10 per cent, sodium nitrite solution, and allow to stand for 5 minutes. Add 10 ml. of water, transfer to a small separatory funnel and extract the oil with about 20 ml. of ether. Wash the ethereal extract successively with water, dilute sodium hydroxide solution and water. Remove the ether on a previously warmed water bath no flames should be present in the vicinity. Apply Liebermann s nitroso reaction to the residual oil or solid thus. Place 1 drop or 0 01-0 02 g. of the nitroso compovmd in a dry test-tube, add 0 05 g. of phenol and warm together for 20 seconds cool, and add 1 ml. of concentrated sulphuric acid. An intense green (or greenish-blue) colouration will be developed, which changes to pale red upon pouring into 30-50 ml. of cold water the colour becomes deep blue or green upon adding excess of sodium hydroxide solution. [Pg.649]

P-Hydroxy-a-naphthaldehyde, Equip a 1 litre three-necked flask with a separatory funnel, a mercury-sealed mechanical stirrer, and a long (double surface) reflux condenser. Place 50 g. of p-naphthol and 150 ml. of rectified spirit in the flask, start the stirrer, and rapidly add a solution of 100 g. of sodium hydroxide in 210 ml. of water. Heat the resulting solution to 70-80° on a water bath, and place 62 g. (42 ml.) of pure chloroform in the separatory funnel. Introduce the chloroform dropwise until reaction commences (indicated by the formation of a deep blue colour), remove the water bath, and continue the addition of the chloroform at such a rate that the mixture refluxes gently (about 1 5 hours). The sodium salt of the phenolic aldehyde separates near the end of the addition. Continue the stirring for a further 1 hour. Distil off the excess of chloroform and alcohol on a water bath use the apparatus shown in Fig. II, 41, 1, but retain the stirrer in the central aperture. Treat the residue, with stirring, dropwise with concentrated hydrochloric acid until... [Pg.704]

Xanthhydrol. Prepare an amalgam from 9 0 g. of clean sodium and 750 g. (55 ml.) of mercury (Section 11,50,7, Method 1), and warm it to 50° in a 500 ml. Pyrex bottle. Add a cold suspension of 25 g. of xanthone in 175 ml. of rectified spirit, stopper the bottle and shake vigorously raise the stopper from time to time to release the pressure. The temperature rises rapidly to 60-70°, the sohd xanthone passes into solution, and a transient blue colour is developed. After about 5 minutes the alcoholic solution is clear and almost colourless. Shake for a further 10 minutes, separate the mercury, and wash it with 15 ml. of alcohol. Filter the... [Pg.964]


See other pages where Blue-coloured solution is mentioned: [Pg.431]    [Pg.89]    [Pg.144]    [Pg.67]    [Pg.76]    [Pg.118]    [Pg.431]    [Pg.89]    [Pg.144]    [Pg.67]    [Pg.76]    [Pg.118]    [Pg.183]    [Pg.185]    [Pg.189]    [Pg.343]    [Pg.370]    [Pg.461]    [Pg.463]    [Pg.197]    [Pg.241]    [Pg.421]    [Pg.435]    [Pg.436]    [Pg.454]    [Pg.458]    [Pg.590]    [Pg.599]    [Pg.648]    [Pg.898]    [Pg.937]    [Pg.1041]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Blue colour

Blue solutions

Colour solution

© 2024 chempedia.info