Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper crystalline

Egyptian blue calcium copper crystalline compound... [Pg.97]

To prepare pure acetic acid (glacial acetic acid), the crude aqueous product is converted into the sodium salt, the latter dehydrated by fusionf and then heated with concentrated sulphuric acid anhydrous acetic acid, b.p. 118°, distils over. Only the preparation of aqueous acetic acid and of crystalline copper acetate is described below. [Pg.74]

Required Anthranilic acid, 20 g. anhydrous sodium carbonate, 7 5 g, sodium nitrite, 12 g. concentrated hydrochloric acid, 190 ml. crystalline copper sulphate, 50 g. concentrated ammonia, 85 ml, hydroxylamine hydrochloride, 14-5 g. (or hydroxylamine sulphate, 17-4 g.) acetic acid, 10-20 ml,... [Pg.200]

B) Preparation of the Cuprous Solution, Add 85 ml. of concentrated ammonia solution (d, o-o88) to a solution of 50 g. of crystalline copper sulphate in 200 ml. of water, and cool to 10 . Dissolve 14 5 g. of hydroxylamine hydrochloride (or 17-4 g. of the sulphate) in 50 ml. of water, cool to 10 , and add a solution of 9 g. of sodium hydroxide in 30 ml. of water. Without delay add this hydroxylamine solution with stirring to the copper solution, which will be immediately reduced, but will retain a blue colour. [Pg.200]

Required Arsenious oxide, 27 g. aniline, 20 ml. (20 g.) anhydrous sodium carbonate, 55 g. crystalline copper sulphate,... [Pg.312]

Solution A. Dissolve 17 320 g. of powdered crystalline copper sulphate, CuS04,5H20, in water and make the solution up to 250 ml. in a graduated flask. [Pg.461]

Dissolve 200 g. of sodium nitrite in 400 ml. of water in a 2-litre beaker provided with an efficient mechanical stirrer, and add 40 g. of copper powder (either the precipitated powder or copper bronze which has been washed with a little ether). Suspend the fluoborate in about 200 ml. of water and add it slowly to the well-stirred mixture. Add 4-5 ml. of ether from time to time to break the froth. The reaction is complete when all the diazonium compound has been added. Transfer the mixture to a large flask and steam distil until no more solid passes over (about 5 litres of distillate). Filter off" the crystalline solid in the steam distillate and dry upon filter paper in the air this o-dinitrobenzene (very pale yellow crystals) has m.p. 116° (t.c., is practically pure) and weighs 29 g. It may be recrystallised from alcohol the recrystallised solid melts at 116-5°. [Pg.613]

The reaction between phthalonitrUe and copper also takes place readily in feoihng quinoline or a-methyhiaphthalene the pigment is precipitated as fast as it is formed as a crystalline product. It is separated from the excess of copper by shaking with alcohol, when the metal sinks and the pigment, which remains in suspension, can be poured off the process may be repeated to give the pure compound. [Pg.984]

Nickel also is deterrnined by a volumetric method employing ethylenediaminetetraacetic acid as a titrant. Inductively coupled plasma (ICP) is preferred to determine very low nickel values (see Trace AND RESIDUE ANALYSIS). The classical gravimetric method employing dimethylglyoxime to precipitate nickel as a red complex is used as a precise analytical technique (122). A colorimetric method employing dimethylglyoxime also is available. The classical method of electro deposition is a commonly employed technique to separate nickel in the presence of other metals, notably copper (qv). It is also used to estabhsh caUbration criteria for the spectrophotometric methods. X-ray diffraction often is used to identify nickel in crystalline form. [Pg.13]

Ammonia forms a great variety of addition or coordination compounds (qv), also called ammoniates, ia analogy with hydrates. Thus CaCl2 bNH and CuSO TNH are comparable to CaCl2 6H20 and CuSO 4H20, respectively, and, when regarded as coordination compounds, are called ammines and written as complexes, eg, [Cu(NH2)4]S04. The solubiHty ia water of such compounds is often quite different from the solubiHty of the parent salts. For example, silver chloride, AgQ., is almost iasoluble ia water, whereas [Ag(NH2)2]Cl is readily soluble. Thus silver chloride dissolves ia aqueous ammonia. Similar reactions take place with other water iasoluble silver and copper salts. Many ammines can be obtained ia a crystalline form, particularly those of cobalt, chromium, and platinum. [Pg.338]

Solvent for Electrolytic Reactions. Dimethyl sulfoxide has been widely used as a solvent for polarographic studies and a more negative cathode potential can be used in it than in water. In DMSO, cations can be successfully reduced to metals that react with water. Thus, the following metals have been electrodeposited from their salts in DMSO cerium, actinides, iron, nickel, cobalt, and manganese as amorphous deposits zinc, cadmium, tin, and bismuth as crystalline deposits and chromium, silver, lead, copper, and titanium (96—103). Generally, no metal less noble than zinc can be deposited from DMSO. [Pg.112]

Shipment ndStora.ge. The crystalline material is shipped as a nonha2ardous material, in polyethylene-lined fiber dmms. The solution can be shipped in dmms or bulk. Suitable materials of constmction for handling ammonium thiocyanate are aluminum, 316 stainless steel, mbber, poly(vinyl chloride), and glass-reinforced epoxy. Steel, 304 stainless steel, and copper alloys should be avoided (375,376). [Pg.152]

Stannous Oxide. Stannous oxide, SnO ((tin(II) oxide), mol wt 134.70, sp gr 6.5) is a stable, blue-black, crystalline product that decomposes at above 385°C. It is insoluble in water or methanol, but is readily soluble in acids and concentrated alkaHes. It is generally prepared from the precipitation of a stannous oxide hydrate from a solution of stannous chloride with alkaH. Treatment at controUed pH in water near the boiling point converts the hydrate to the oxide. Stannous oxide reacts readily with organic acids and mineral acids, which accounts and for its primary use as an intermediate in the manufacture of other tin compounds. Minor uses of stannous oxide are in the preparation of gold—tin and copper—tin mby glass. [Pg.65]

Hypobromites, the salts of hypobromous acid, do not keep well because they gradually disproportionate to bromide and bromate. Solutions are best prepared as needed from bromine and alkafl with cooling. Because disproportionation is catalyzed by cobalt, nickel, and copper (70), these impurities should be avoided. SoHd alkaline earth hypobromites, or more properly, bromide hypobromites such as calcium bromide hypobromite [67530-61 CaBr(OBr), have been known for many years, but the pure crystalline hydrates sodium hypobromite pentahydrate [13824-96-9] NaOBr 5H20, and potassium hypobromite tribydrate [13824-97-0], KOBr 3H20, were not described until 1952 (71). Hypobromites are strong bleaching agents, similar to hypochlorites. [Pg.293]

In 1943 the reaction of anhydrous RhCl and CO at 80°C under pressure with a haUde acceptor, such as copper, was reported to produce a black crystalline product formulated as Rh4(CO) (42). The correct stmcture of the complex was... [Pg.65]

Gopper(II) Sulfates. Copper(II) sulfate pentahydrate [7758-99-8] CuS04-5H20, occurs in nature as the blue triclinic crystalline mineral chalcanthite [13817-21 -5]. It is the most common commercial compound of copper. The pentahydrate slowly effloresces in low humidity or above 30.6°C. Above 88°C dehydration occurs rapidly. [Pg.254]

Crystalline copper and magnesium have face-centred-cubic and close-packed-hexagonal structures respectively. [Pg.276]

From a brief consideration of the properties of the above three polymers it will be realised that there are substantial differences between the crystallisation of simple molecules such as water and copper sulphate and of polymers such as polyethylene. The lack of rigidity, for example, of polyethylene indicates a much lower degree of crystallinity than in the simple molecules. In spite of this the presence of crystalline regions in a polymer has large effects on such properties as density, stiffness and clarity. [Pg.49]

The copolymers have been used in the manufacture of extruded pipe, moulded fittings and for other items of chemical plant. They are, however, rarely used in Europe for this purpose because of cost and the low maximum service temperature. Processing conditions are adjusted to give a high amount of crystallinity, for example by the use of moulds at about 90°C. Heated parts of injection cylinders and extruder barrels which come into contact with the molten polymer should be made of special materials which do not cause decomposition of the polymer. Iron, steel and copper must be avoided. The danger of thermal decomposition may be reduced by streamlining the interior of the cylinder or barrel to avoid dead-spots and by careful temperature control. Steam heating is frequently employed. [Pg.468]


See other pages where Copper crystalline is mentioned: [Pg.374]    [Pg.284]    [Pg.362]    [Pg.362]    [Pg.408]    [Pg.374]    [Pg.284]    [Pg.362]    [Pg.362]    [Pg.408]    [Pg.163]    [Pg.314]    [Pg.329]    [Pg.189]    [Pg.945]    [Pg.953]    [Pg.473]    [Pg.167]    [Pg.290]    [Pg.520]    [Pg.531]    [Pg.504]    [Pg.105]    [Pg.235]    [Pg.308]    [Pg.130]    [Pg.463]    [Pg.203]    [Pg.477]    [Pg.6]    [Pg.66]    [Pg.287]    [Pg.139]    [Pg.12]    [Pg.394]    [Pg.16]    [Pg.126]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



© 2024 chempedia.info