Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers temperatures

In conclusion, it has been demonstrated that PEG-based macroinitiators are relatively slow initiators in copper mediated living radical polymerization this will result in AB block copolymers with heterogeneous composition but all macroinitiators are eventually transformed into block copolymers. Temperature or solvent has little effect on this, however, the macroinitiator chain length influences the initiator efficiency with shorter chain molecules being faster initiators than longer chain macromolecules. [Pg.139]

Table 3.4 Temperature Coordinate and Relative Height (in Parenthesis) for the Two Loss Tangent Maxima Observed in Mixtures of Isoprene-Butadiene Block Copolymers with Homopolymers of These Two Repeat Units in the Same Proportion ... Table 3.4 Temperature Coordinate and Relative Height (in Parenthesis) for the Two Loss Tangent Maxima Observed in Mixtures of Isoprene-Butadiene Block Copolymers with Homopolymers of These Two Repeat Units in the Same Proportion ...
A brief review has appeared covering the use of metal-free initiators in living anionic polymerizations of acrylates and a comparison with Du Font s group-transfer polymerization method (149). Tetrabutylammonium thiolates mn room temperature polymerizations to quantitative conversions yielding polymers of narrow molecular weight distributions in dipolar aprotic solvents. Block copolymers are accessible through sequential monomer additions (149—151) and interfacial polymerizations (152,153). [Pg.170]

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Copolymers. There are two forms of copolymers, block and random. A nylon block copolymer can be made by combining two or more homopolymers in the melt, by reaction of a preformed polymer with diacid or diamine monomer by reaction of a complex molecule, eg, a bisoxazolone, with a diamine to produce a wide range of multiple amide sequences along the chain and by reaction of a diisocyanate and a dicarboxybc acid (193). In all routes, the composition of the melt is a function of temperature and more so of time. Two homopolyamides in a moisture-equiUbrated molten state undergo amide interchange where amine ends react with the amide groups. [Pg.259]

Phenolic Resins. At elevated temperatures, phenoHc resins are cured with polysulfide resins through a condensation reaction. The product may be considered a block copolymer of the rigid phenoHc resin and the flexible polysulfide. Thus, the polysulfide acts to flexibiHze the resulting polymer. [Pg.456]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Fig. 3. Influence of vinyl alcohol—vinyl acetate copolymer composition on melting temperature (56), where A represents block copolymers B, blocky... Fig. 3. Influence of vinyl alcohol—vinyl acetate copolymer composition on melting temperature (56), where A represents block copolymers B, blocky...
Whereas random copolymers exhibit one T described by equation 38, block copolymers, because of this microphase separation, exhibit two glass-transition temperatures. The T of each block is close to, if not the same as, the homopolymer from which it was formed. Polymer properties are also affected by the arrangement of the blocks. This is shown for high styrene-containing or high molecular-weight styrene resias of various block arrangements ia Table 3. [Pg.184]

Thermoplastic elastomers are often multiphase compositions in which the phases are intimately dispersed. In many cases, the phases are chemically bonded by block or graft copolymerization. In others, a fine dispersion is apparentiy sufficient. In these multiphase systems, at least one phase consists of a material that is hard at room temperature but becomes fluid upon heating. Another phase consists of a softer material that is mbberlike at RT. A simple stmcture is an A—B—A block copolymer, where A is a hard phase and B an elastomer, eg, poly(styrene- -elastomer- -styrene). [Pg.11]

Adhesives, Coatings, and Sealants. Eor these appHcations, styrenic block copolymers must be compounded with resins and oils (Table 10) to obtain the desired properties (56—58). Materials compatible with the elastomer segments soften the final product and give tack, whereas materials compatible with the polystyrene segments impart hardness. The latter are usually styrenic resins with relatively high softening points. Materials with low softening points are to be avoided, as are aromatic oils, since they plasticize the polystyrene domains and reduce the upper service temperature of the final products. [Pg.18]

Blends with styrenic block copolymers improve the flexibiUty of bitumens and asphalts. The block copolymer content of these blends is usually less than 20% even as Httie as 3% can make significant differences to the properties of asphalt (qv). The block copolymers make the products more flexible, especially at low temperatures, and increase their softening point. They generally decrease the penetration and reduce the tendency to flow at high service temperatures and they also increase the stiffness, tensile strength, ductility, and elastic recovery of the final products. Melt viscosities at processing temperatures remain relatively low so the materials are still easy to apply. As the polymer concentration is increased to about 5%, an interconnected polymer network is formed. At this point the nature of the mixture changes from an asphalt modified by a polymer to a polymer extended with an asphalt. [Pg.19]

Multiblock Copolymers. Replacement of conventional vulcanized mbber is the main appHcation for the polar polyurethane, polyester, and polyamide block copolymers. Like styrenic block copolymers, they can be molded or extmded using equipment designed for processing thermoplastics. Melt temperatures during processing are between 175 and 225°C, and predrying is requited scrap is reusable. They are mostiy used as essentially pure materials, although some work on blends with various thermoplastics such as plasticized and unplasticized PVC and also ABS and polycarbonate (14,18,67—69) has been reported. Plasticizers intended for use with PVC have also been blended with polyester block copolymers (67). [Pg.19]

By block copolymerisation so that one component of the block copolymer has a Tg well below the expected service temperature range (e.g polypropylene with small blocks of polyethylene or preferably polypropylene with small amorphous blocks of ethylene-propylene copolymer). [Pg.191]

The block copolymers are easy to process but in order to obtain maximum clarity and toughness attention has to be paid to melt and mould temperatures during injection moulding. [Pg.451]

A wide range of polyether-polyamide block copolymers were first offered by Atochem in 1981 under the trade name Pebax. These are made by first producing a low molecular weight polyamide using an excess of dicarboxylic acid at a temperature above 230°C and under a pressure of up to 25 bar. This is then combined with a polyether by reaction at 230-280°C under vacuum (O.l-lOTorr) in the presence of a suitable catalyst such as Ti(OR)4. [Pg.527]

Block copolymers of polycarbonates and silicone polymers have also been commercially marketed (e.g. Makrolons KU 1-1198 and KU 1-1207). These block copolymers show a marked increase in toughness at low temperatures coupled with reduced notch sensitivity. (They show little improvement in toughness at normal ambient temperatures.)... [Pg.580]

In Chapters 3 and 11 reference was made to thermoplastic elastomers of the triblock type. The most well known consist of a block of butadiene units joined at each end to a block of styrene units. At room temperature the styrene blocks congregate into glassy domains which act effectively to link the butadiene segments into a rubbery network. Above the Tg of the polystyrene these domains disappear and the polymer begins to flow like a thermoplastic. Because of the relatively low Tg of the short polystyrene blocks such rubbers have very limited heat resistance. Whilst in principle it may be possible to use end-blocks with a higher Tg an alternative approach is to use a block copolymer in which one of the blocks is capable of crystallisation and with a well above room temperature. Using what may be considered to be an extension of the chemical technology of poly(ethylene terephthalate) this approach has led to the availability of thermoplastic polyester elastomers (Hytrel—Du Pont Amitel—Akzo). [Pg.737]

There is second shear adhesion test that is now being reported with increasing frequency, the so-called SAFT, or shear adhesion failure temperature test. It is particularly popular among block copolymer PSA developers. In this test [15], a shear specimen with an overlap area of 2.54 cm x 2.54 cm is prepared and suspended in a circulating air oven. A 1-kg weight is attached to the tape and the oven temperature is raised continuously 5.5°C per 15 min until failure. An industry wide standard has not yet been written for this test. [Pg.471]

Hybrids of block copolymer rubbers and acrylics have also been used to increase the low-temperature impact resistance of the adhesive used for body-side molding attachment [127]. To further enhance performance, a new type of hybrid adhesive has been developed, which combines an adhesive polymer, like an... [Pg.515]

Most types of PSAs have found some application in the label industry. Block copolymer-based adhesives are perhaps the most popular because of their high adhesion to a variety of surfaces, their low cost, their good performance over a range of temperatures and peel rates, and their ease of processing. For applications where high temperature performance is required, block copolymers have been formulated with high T end block associating resins or polymers. [Pg.523]


See other pages where Block copolymers temperatures is mentioned: [Pg.467]    [Pg.27]    [Pg.151]    [Pg.234]    [Pg.286]    [Pg.289]    [Pg.416]    [Pg.198]    [Pg.214]    [Pg.498]    [Pg.521]    [Pg.189]    [Pg.13]    [Pg.14]    [Pg.54]    [Pg.260]    [Pg.879]    [Pg.130]    [Pg.476]    [Pg.480]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.484]    [Pg.484]    [Pg.514]    [Pg.515]    [Pg.528]    [Pg.554]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Block copolymer peak melting temperatures

Block copolymers glass transition temperature

Block temperature

Glass transition temperature of block copolymers

Melting transition temperature block copolymers

Order-disorder temperature block copolymer melt

Time-temperature superposition block copolymers

© 2024 chempedia.info