Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Definite value

These new wave functions are eigenfunctions of the z component of the angular momentum iij = —with eigenvalues = +2,0, —2 in units of h. Thus, Eqs. (D.l 1)-(D.13) represent states in which the vibrational angular momentum of the nuclei about the molecular axis has a definite value. When beating the vibrations as harmonic, there is no reason to prefer them to any other linear combinations that can be obtained from the original basis functions in... [Pg.621]

Linear Equations A hnear equation is one of the first degree (i.e., only the first powers of the variables are involved), and the process of obtaining definite values for the unknown is called solving the equation. Every linear equation in one variable is written Ax + B = 0 or X = —B/A. Linear equations in n variables have the form... [Pg.432]

For a substance in a given system the chemical potential gi has a definite value however, the standard potentials and activity coefficients have different values in these three equations. Therefore, the selection of a concentration scale in effect determines the standard state. [Pg.255]

This equation, known as the frequency equation, has two solutions for op-. When substituted in either of the preceding equations, each one of these gives a definite value for A1/A2. This means that there are two solutions for this example, which are of the form Ai sin(ft>/) and A2 sin(ft)/). As with many such problems, the final answer is the superposition of the two solutions with the final amplitudes and frequencies determined by the boundary conditions. [Pg.683]

The compressive data are of limited design value. They can be used for comparative material evaluation and design purposes if the conditions of the test approximate those of the application. The data are of definite value for materials that fail in the compressive test by a shattering fracture. On the other hand, for those that do not fail in this manner, the compressive information is arbitrary and is determined by selecting a point of compressive deformation at which it is considered that a complete failure of the material has taken place. About 10% of deformation are viewed in most cases as maximum. [Pg.311]

For a given molecule and a given intemuclear separation a would have a definite value, such as to make the energy level for P+ lie as low as possible. If a happens to be nearly 1 for the equilibrium state of the molecule, it would be convenient to say that the bond is an electron-pair bond if a is nearly zero, it could be called an ionic bond. This definition is somewhat unsatisfactory in that it does not depend on easily observable quantities. For example, a compound which is ionic by the above definition might dissociate adiabatically into neutral atoms, the value of a changing from nearly zero to unity as the nuclei separate, and it would do this in case the electron affinity of X were less than the ionization potential of M. HF is an example of such a compound. There is evidence, given bdow, that the normal molecule approximates an ionic compound yet it would dissociate adiabatically into neutral F and H.13... [Pg.71]

It follows that for a special value of one parameter, the observed value of y is independent of the second parameter. This happens at Ii= a2/ai2 or I2 = -ai/ai2 any of these values determines y= a -aia2/ai2, the so called isoparametrical point. The argument can evidently be extended to more than two independently variable parameters. Experimental evidence is scarce. In the field of extrathermodynamic relationships, i.e., when j and 2 are kinds of a constants, eq. (84) was derived by Miller (237) and the isoparametrical point was called the isokinetic point (170). Most of the available examples originate from this area (9), but it is difficult to attribute to the isoparametrical point a definite value and even to obtain a significant proof that a is different from zero (9, 170). It can happen—probably still more frequently than with the isokinetic temperature—that it is merely a product of extrapolation without any immediate physical meaning. [Pg.473]

The changeover to thermodynamic activities is equivalent to a change of variables in mathematical equations. The relation between parameters and a. is unambiguous only when a definite value has been selected for the constant p. For solutes this constant is selected so that in highly dilute solutions where the system p approaches an ideal state, the activity will coincide with the concenttation (lim... [Pg.39]

At a definite value of the electrode potential E, the charge of the electrode s surface and hence the value of drop to zero. This potential is called the point of zero charge (PZC). The metal surface is positively charged at potentials more positive than the PZC and is negatively charged at potentials more negative than the PZC. The point of zero charge is a characteristic parameter for any electrode-electrolyte interface. The concept of PZC is of exceptional importance in electrochemistry. [Pg.149]

Salts such as silver chloride or lead sulfate which are ordinarily called insoluble do have a definite value of solubility in water. This value can be determined from conductance measurements of their saturated solutions. Since a very small amount of solute is present it must be completely dissociated into ions even in a saturated solution so that the equivalent conductivity, KV, is equal to the equivalent conductivity at infinite dilution which according to Kohlrausch s law is the sum of ionic conductances or ionic mobilities (ionic conductances are often referred to as ionic mobilities on account of the dependence of ionic conductances on the velocities at which ions migrate under the influence of an applied emf) ... [Pg.621]

The magnetic moment of an isolated electron has a definite values of... [Pg.231]

Special care has to be taken if the polymer is only soluble in a solvent mixture or if a certain property, e.g., a definite value of the second virial coefficient, needs to be adjusted by adding another solvent. In this case the analysis is complicated due to the different refractive indices of the solvent components [32]. In case of a binary solvent mixture we find, that formally Equation (42) is still valid. The refractive index increment needs to be replaced by an increment accounting for a complex formation of the polymer and the solvent mixture, when one of the solvents adsorbs preferentially on the polymer. Instead of measuring the true molar mass Mw the apparent molar mass Mapp is measured. How large the difference is depends on the difference between the refractive index increments ([dn/dc) — (dn/dc)A>0. (dn/dc)fl is the increment determined in the mixed solvents in osmotic equilibrium, while (dn/dc)A0 is determined for infinite dilution of the polymer in solvent A. For clarity we omitted the fixed parameters such as temperature, T, and pressure, p. [Pg.222]

The calorimeter response (the emf-time curve or the thermogram) is, of course, proportional at any time to the temperature difference which exists between two definite values of the space variable ri and r2 where the active and reference junctions of the thermoelement are located ... [Pg.212]


See other pages where Definite value is mentioned: [Pg.50]    [Pg.110]    [Pg.127]    [Pg.129]    [Pg.693]    [Pg.693]    [Pg.202]    [Pg.192]    [Pg.569]    [Pg.318]    [Pg.245]    [Pg.217]    [Pg.354]    [Pg.369]    [Pg.1034]    [Pg.86]    [Pg.681]    [Pg.262]    [Pg.28]    [Pg.2]    [Pg.331]    [Pg.260]    [Pg.28]    [Pg.319]    [Pg.442]    [Pg.446]    [Pg.42]    [Pg.11]    [Pg.73]    [Pg.412]    [Pg.32]    [Pg.77]    [Pg.659]    [Pg.659]    [Pg.52]    [Pg.166]    [Pg.98]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



© 2024 chempedia.info