Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzoic acid formation

Benzoic acid formation is not the sole pathway in aromatization of quinic and shikimic acids as their administration to rats increases the excretion on urinary catechol [31]. In addition, vanillic acid is also excreted. When rats feed quinic acid mixed in the purified diet, catechol may be readily detected free (unconjugated) as well as... [Pg.928]

This substantiates the positive role of O2 in promoting benzaldehye and benzoic acid formation. From the above-mentioned two examples, it is apparent that there are many parallel reactions in the aerobic oxidation of benzyl alcohol, besides the direct dehydrogenation of benzyl alcohol to benzaldehyde, which result in the undesired by-products. On the basis of these studies and other literature evidence, a network of reactions occurring during the aerobic oxidation of benzyl alcohol over Pd/AljOj catalyst is presented in Scheme 12.1. After elucidating the mechanisms of reactions that lead to by-products, the next step in catalyst development is the complete elimination or at least suppression of these byproducts. It is logical to assume that all these reactions may not have the same active sites, and it is important to identify the different active sites for different reactions. [Pg.384]

The data provide convincing evidence that neither benzaldehyde nor phenyl-glyoxylic acid is an intermediate in the benzoic acid formation. The mechanism proposed is shown in Scheme 3. This oxidation represents the first example of a... [Pg.83]

The theory of sublimation, t.e. the direct conversion from the vapour to the sohd state without the intermediate formation of the liquid state, has been discussed in Section 1,19. The number of compounds which can be purified by sublimation under normal pressure is comparatively small (these include naphthalene, anthracene, benzoic acid, hexachloroethane, camphor, and the quinones). The process does, in general, yield products of high purity, but considerable loss of product may occur. [Pg.154]

Aryl- or alkenylpalladium comple.xcs can be generated in situ by the trans-metallation of the aryl- or alkenylmercury compounds 386 or 389 with Pd(Il) (see Section 6). These species react with 1,3-cydohexadiene via the formation of the TT-allylpalladium intermediate 387, which is attacked intramolecularlv by the amide or carboxylate group, and the 1,2-difunctionalization takes place to give 388 and 390[322]. Similarly, the ort/trt-thallation of benzoic acid followed by transmetallation with Pd(II) forms the arylpalladium complex, which reacts with butadiene to afford the isocoumarin 391, achieving the 1,2-difunctionalization of butadiene[323]. [Pg.73]

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

Benzyl Chloride. Benzyl chloride is manufactured by high temperature free-radical chlorination of toluene. The yield of benzyl chloride is maximized by use of excess toluene in the feed. More than half of the benzyl chloride produced is converted by butyl benzyl phthalate by reaction with monosodium butyl phthalate. The remainder is hydrolyzed to benzyl alcohol, which is converted to ahphatic esters for use in soaps, perfume, and davors. Benzyl salicylate is used as a sunscreen in lotions and creams. By-product benzal chloride can be converted to benzaldehyde, which is also produced directiy by oxidation of toluene and as a by-product during formation of benzoic acid. By-product ben zotrichl oride is not hydrolyzed to make benzoic acid but is allowed to react with benzoic acid to yield benzoyl chloride. [Pg.191]

Hydroxy group containing tertiary amines are also used because they become incorporated into the polymer stmcture, which eliminates odor formation ia the foam (3). Delayed-action or heat-activated catalysts are of particular interest ia molded foam appHcations. These catalysts show low activity at room temperature but become active when the exotherm builds up. In addition to the phenol salt of DBU (4), benzoic acid salts of Dabco are also used (5). [Pg.343]

Benzoic acid is also used as a down-hole drilling mud additive where it functions as a temporary plugging agent in subterranean formations. Since this is a secondary oil recovery appHcation, this use is heavily dependent on the price of cmde oil. [Pg.55]

Benzyl chloride readily forms a Grignard compound by reaction with magnesium in ether with the concomitant formation of substantial coupling product, 1,2-diphenylethane [103-29-7]. Benzyl chloride is oxidized first to benzaldehyde [100-52-7] and then to benzoic acid. Nitric acid oxidizes directly to benzoic acid [65-85-0]. Reaction with ethylene oxide produces the benzyl chlorohydrin ether, CgH CH20CH2CH2Cl (18). Benzylphosphonic acid [10542-07-1] is formed from the reaction of benzyl chloride and triethyl phosphite followed by hydrolysis (19). [Pg.59]

Aconitine produces an intense tingling sensation when a drop of a solution, 1 in 10,000, is applied to the tip of the tongue. It also gives a characteristic unstable, crystalline precipitate when a few drops of potassium permanganate solution are added to a solution of the alkaloid in dilute acetic acid. The formation of acetic acid when the alkaloid is heated dry, or of benzoic acid when it is hydrolysed by alkali, have also been suggested as identification tests. For the recognition of minute quantities a biological test is probably the best procedure. ... [Pg.675]

Sodium pyrazolate and 3,5-dimethylpyrazolate, [( " -cod)Rh(/A-Cl)]2, carbon monoxide, 3-(diphenylphosphino)benzoic acid, or (2-formylphenyl)diphenyl-phosphine give rise to complexes 120 (R = H, Me) and 121 (R = H, Me) [94JOM(469)213]. However, 2-(diphenylphosphino)benzoic acid (the carboxyl group in the ortho position) leads to formation of the mononuclear complexes 122. The products appear to be catalysts for hydroformylation reactions [93MI2]. [Pg.187]

Phenyl radicals can be generated by the thermal decomposition of lead tctrabcnzoate, phenyl iodosobenzoate, and diphenyliodonium hydroxide,- - and by the electrolysis of benzoic acid.- These methods have been employed in the arylation of aromatic compounds, including heterocycles. A method of promise which has not been applied to the arylation of heterocycles is the formation of aryl radicals by the photolysis of aromatic iodides at 2537... [Pg.135]

Dihydropteroic acid (85) is an intermediate to the formation of the folic acid necessary for intermediary metabolism in both bacteria and man. In bacteria this intermediate is produced by enzymatic condensation of the pteridine, 86, with para-amino-benzoic acid (87). It has been shown convincingly that sulfanilamide and its various derivatives act as a false substrate in place of the enzymatic reaction that is, the sulfonamide blocks the reaction by occupying the site intended for the benzoic acid. The lack of folic acid then results in the death of the microorganism. Mammals, on the other hand, cannot synthesize folic acid instead, this compound must be ingested preformed in the form of a vitamin. Inhibition of the reaction to form folic acid Ls thus without effect on these higher organisms. [Pg.121]

The filter cake is stirred with 3.1 liters of acetone. The volume of acetone used is about 1.5 times the weight of the cake resulting in about a 65% acetone concentration. The benzoic acid dissolves in the acetone and the urokinase flocculates out. Sodium benzoate, about 1% of the weight of the cake, or 21 grams, is added to speed up the formation of the precipitate. The suspension of crude urokinase in acetone Is filtered on a Buchner funnel using filter paper precoated with a diatomaceous silica product (Celite 505). The precipitate is washed with acetone until the filtrate is water clear. The precipitate is then washed with ether and air dried. The yield of powder so obtained is 2.3 grams. [Pg.1569]

Formate ion, bond lengths in, 757 electrostatic potential map of, 757 Formic acid, bond lengths in. 757 pKa of, 756 Formyl group, 697 p-Formyl benzoic acid, p/C, of, 760 Fourier-transform NMR spectroscopy (FT-NMR), 447-448 Fractional crystallization, resolution and, 307... [Pg.1298]

The synthesis of 1 -benzothiepin 1 -oxide (23) can be achieved via complex formation with tricarbonyl iron, and quantitative oxidation of the coordination compound 22 with 3-chloroperoxy-benzoic acid. Subsequent irradiation at — 50 C provides 23, which crystallized as yellow needles after low-temperature (-40 C) chromatography, and was characterized by 1H NMR spectroscopy at — 30 C23 before loosing sulfur within one hour at 13°C to give naphthalene. [Pg.90]

Both for reaction in and IV the order with respect to catalyst is 0.5. The activation enthalpies are 96.6 3.4 and 97.6 3.4 kJ mol-1 respectively when Ti(OBu)4 is used as the catalyst. This is not too far from the activation enthalpies200 for the Sn(II)-cata-lyzed esterification of B with isophthalic acid (85.1 4.9) and with 2-hydroxyethyl hydrogen isophthalate (85.8 4.2). It is also close to the Ti(OBu)4-catalyzed esterification of benzoic acid with B (85.8 2.5)49. This is probably due to the formation of analogous intermediate complexes and similar catalytic mechanisms. On the other hand, the activation entropies of reactions III and IV are less negative than those of the reaction of benzoic or isophthalic acid with B. This probably corresponds to a stronger desolvation when the intermediary complex is formed and could be due to the presence of the sodium sulfonate group. [Pg.90]

Derbyshire and Waters192 measured the rates of bromination of sodium toluene-m-sulphonate (in water) and of benzoic acid (in aqueous acetic acid) by hypobromous acid with sulphuric or perchloric acids as catalysts, all at 21.5 °C. No bromination occurred in the absence of mineral acid and the reaction was strictly first-order in aromatic and in hypobromous acid. The function of the catalyst was considered to be the formation of a positive brominating species, according to the equilibrium... [Pg.84]

An example of a reaction series in which large deviations are shown by — R para-substituents is provided by the rate constants for the solvolysis of substituted t-cumyl chlorides, ArCMe2Cl54. This reaction follows an SN1 mechanism, with intermediate formation of the cation ArCMe2 +. A —R para-substituent such as OMe may stabilize the activated complex, which resembles the carbocation-chloride ion pair, through delocalization involving structure 21. Such delocalization will clearly be more pronounced than in the species involved in the ionization of p-methoxybenzoic acid, which has a reaction center of feeble + R type (22). The effective a value for p-OMe in the solvolysis of t-cumyl chloride is thus — 0.78, compared with the value of — 0.27 based on the ionization of benzoic acids. [Pg.496]

Hydroxyl elimination is necessary for the formation of benzaldehyde and benzoic acid derivatives and, ultimately, benzene and toluene (Fig. 7.46).2 It is proposed that a cleavage between the hydroxyl group and aromatic ring leads to benzenoid species which undergo further cleavage coupled with oxidation to give various decomposition products. [Pg.420]


See other pages where Benzoic acid formation is mentioned: [Pg.260]    [Pg.899]    [Pg.54]    [Pg.260]    [Pg.899]    [Pg.54]    [Pg.756]    [Pg.224]    [Pg.495]    [Pg.484]    [Pg.201]    [Pg.188]    [Pg.60]    [Pg.60]    [Pg.550]    [Pg.57]    [Pg.66]    [Pg.213]    [Pg.525]    [Pg.9]    [Pg.274]    [Pg.311]    [Pg.164]    [Pg.406]    [Pg.1299]    [Pg.15]    [Pg.808]    [Pg.68]    [Pg.874]    [Pg.4]    [Pg.91]    [Pg.89]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



© 2024 chempedia.info