Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene 1-crystallins

C2H4N2O3, NH2CONHCOOH. Unknown in the free state as it breaks down immediately to urea and COi- The NH4, Ba, Ca, K and Na salts are known and are prepared by treating ethyl allophanate with the appropriate hydroxide. The esters with alcohols and phenols are crystalline solids, sparingly soluble in water and alcohol. They are formed by passing cyanic acid into alcohols or a solution of an alcohol or phenol in benzene. The amide of allophanic acid is biuret. Alcohols are sometimes isolated and identified by means of their allophanates. [Pg.22]

S02NH) . Colourless crystalline solids formed by the action of ammonia on a solution of sulphuryl chloride in benzene free sulphimide exists only in the polymerized form. [Pg.376]

Conventional spontaneous Raman scattering is the oldest and most widely used of the Raman based spectroscopic methods. It has served as a standard teclmique for the study of molecular vibrational and rotational levels in gases, and for both intra- and inter-molecular excitations in liquids and solids. (For example, a high resolution study of the vibrons and phonons at low temperatures in crystalline benzene has just appeared [38].)... [Pg.1197]

Distil the filtered ethereal solution, using a 100 ml. flask fitted with a dropping-funnel and a side-arm for the condenser observe all the normal precautions for ether distillation (p. 162) and run the ethereal solution into the flask as fast as the ether distils over. When all the ether has distilled off, detach and cool the flask, when the oily colourless residue of saligenin will rapidly crystallise. Weight of product, 5-0 g. m.p. 75-82°. Recrystallise either from a mixture of benzene and petroleum (b.p. 60-80°), or from a minimum of water, allowing the stirred aqueous solution to cool to 65-70° before chilling. The dry crystalline saligenin has m.p. 85-86°. [Pg.156]

In preparing an aqueous sol ution of a diazonium salt, such as benzene-diazonium chloride, it is usual to dissolve the amine in a slight excess (about 2 2 molecular equivalents) of dilute hydrochloric acid (or alternatively to dissolve the crystalline amine hydrochloride in i 2 equivalents of the acid) and then add an aqueous solution of a metallic nitrite. Nitrous acid is thus generated in situ, and reacts with the amine salt to give the diazonium compound. For a successful preparation of an aqueous solution of the diazonium salt, however, two conditions must always be observed ... [Pg.183]

Cool the remainder of the filtrate and extract three times with ether, using 20 - 30 ml. for each extraction. Dry the combined ethereal extracts over powdered anhydrous sodium sulphate. Filter into a small flask and distil off the ether on a water-bath. Pour the residual oil into a small dish or beaker crystallisation takes place almost immediately. The salicyl alcohol so obtained is almost pure, but it may, if so desired, be recrystallised from a small quantity of benzene. It is a colourless crystalline solid, m.p. 86 , readily soluble in water it gives a violet coloration with ferric chloride. [Pg.517]

Phenylhydrazones (compare Section III,74,C). Dissolve 0-5 g, of colourless phenylhydrazine hydrochloride and 0 8 g. of sodium acetate in 5 ml. of water, and add a solution of 0-2-0-4 g. of the aldehyde (or ketone) in a little alcohol (free from aldehydes and ketones). Shake the mixture until a clear solution is obtained and add a little more alcohol, if necessary. Warm on a water bath for 10-15 minutes and cool. Filter ofiF the crystalline derivative, and recrystalhse it from dilute alcohol or water sometimes benzene or light petroleum (b.p. 60-80°) may be used. [Pg.721]

Decane-1 10-dicarboxylic acid from sebacic acid. Convert sebacic acid into the acid chloride by treatment with phosphorus penta-chloride (2 mols) and purify by distillation b.p. 146-143°/2 mm. the yield is almost quantitative. Dissolve the resulting sebacoyl chloride in anhydrous ether and add the solution slowly to an ethereal solution of excess of diazomethane (prepared from 50 g. of nitrosomethylurea) allow the mixture to stand overnight. Remove the ether and excess of diazomethane under reduced pressure the residual crystalline 1 8-bis-diazoacetyloctane weighs 19 -3 g. and melts at 91° after crystaUisation from benzene. [Pg.905]

Azlactone of a-benzoylaminocinnamic acid. Place a mi.xture of 27 g. (26 ml.) of redistilled benzaldehyde, 45 g. of Mppuric acid (Section IV,54), 77 g. (71-5) ml. of acetic anhydride and 20-5 g. of anhydrous sodium acetate in a 500 ml. conical flask and heat on an electric hot plate with constant shaking. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat for 2 hours. Then add 100 ml. of alcohol slowly to the contents of the flask, allow the mixture to stand overnight, filter the crystalline product with suction, wash with two 25 ml. portions of ice-cold alcohol and then wash with two 25 ml. portions of boiling water dry at 100°. The yield of almost pure azlactone, m.p. 165-166°, is 40 g. Recrystallisation from benzene raises the m.p. to 167-168°. [Pg.910]

Section IV,49). Reflux the mixture for 1 hour and allow to cool, with continuous stirring. Distil off the methyl alcohol. Add hot water to the residue, filter from impurities, extract the antipyrine with benzene, and evaporate the solvent. RecrystaUise the crude product from benzene or benzene - hght petroleum or from hot water wdth the addition of a little decolomising carbon. The yield of antipyrin (white crystalline solid, m.p. 113°) is 3o g. [Pg.999]

Trioxane and Tetraoxane. The cycHc symmetrical trimer of formaldehyde, trioxane [110-88-3] is prepared by acid-catalyzed Hquid- or vapor-phase processes (147—151). It is a colorless crystalline soHd that bods at 114.5°C and melts at 61—62°C (17,152). The heats of formation are — 176.9 kJ/mol (—42.28 kcal/mol) from monomeric formaldehyde and —88.7 kJ/mol (—21.19 kcal/mol) from 60% aqueous formaldehyde. It can be produced by continuous distillation of 60% aqueous formaldehyde containing 2—5% sulfuric acid. Trioxane is extracted from the distillate with benzene or methylene chloride and recovered by distillation (153) or crystallization (154). It is mainly used for the production of acetal resins (qv). [Pg.498]

Other procedures have also been reported (38,110,111). The properties and chemistry of 9-BBN have been reviewed (112). The reagent is a white crystalline soHd, stable indefinitely at room temperature, soluble in hexane, carbon tetrachloride, benzene, tetrahydrofuran, and diethyl ether. It exists as a... [Pg.310]

Chlorpropamide. Chlorpropamide (l-[(p-chlorophenyl)sulfonyl]-3-propylurea), mol wt 276.75, is a white, crystalline powder, having a slight odor, mp 127—129°C. It is sold as Diabinese, is soluble in water at pH 6 (2.2 mg/mL), and practically insoluble at pH 7.3, soluble in alcohol, and sparingly soluble in chloroform, ether, and benzene. [Pg.342]

A central core of benzene rings is linked by a fuactioaal group X. The most common end groups at the para sites, and R2, are alkyl (—C H2 ) or alkoxy (—OC H2 + ), or acyl chains C SI NO2 cinnamate (—CH=CHCOOC H2 ) or halogens. Cyclohexane rings can sometimes replace one or more of the benzene rings without loss of Hquid crystallinity. [Pg.198]

Methyllithium. MethyUithium [917-54 ] CH Li, crystallizes from benzene or hexane solution giving cubic crystals that have a salt-hke constitution (128). Crystalline methyllithium molecules exist as tetrahedral tetramers (129). Solutions of methyllithium are less reactive than those of its higher homologues. Methyllithium is stable for at least six months in diethyl ether at room temperature. A one-molar solution of methyllithium in tetrahydrofuran (14 wt %) and cumene (83 wt %) containing 0.08 M dimethyknagnesium as stabilizer loses only 0.008% of its activity per day at 15°C and is nonpyrophoric (117). [Pg.229]

Above 100°C, most polyolefins dissolve in various aHphatic and aromatic hydrocarbons and their halogenated derivatives. For example, polybutene dissolves in benzene, toluene, decalin, tetralin, chloroform, and chlorobenzenes. As with other polyolefins, solubiHty of PB depends on temperature, molecular weight, and crystallinity. [Pg.426]

Amino-2-hydroxybenZOiC acid. This derivative (18) more commonly known as 4-aminosa1icy1ic acid, forms white crystals from ethanol, melts with effervescence and darkens on exposure to light and air. A reddish-brown crystalline powder is obtained on recrystallization from ethanol —diethyl ether. The compound is soluble ia dilute solutioas of nitric acid and sodium hydroxide, ethanol, and acetone slightly soluble in water and diethyl ether and virtually insoluble in benzene, chloroform or carbon tetrachloride. It is unstable in aqueous solution and decarboxylates to form 3-amiaophenol. Because of the instabihty of the free acid, it is usually prepared as the hydrochloride salt, mp 224 °C (dec), dissociation constant p 3.25. [Pg.315]

When sublimed, anthraquinone forms a pale yeUow, crystalline material, needle-like in shape. Unlike anthracene, it exhibits no fluorescence. It melts at 286°C and boils at 379°—381°C. At much higher temperatures, decomposition occurs. Anthraquinone has only a slight solubiUty in alcohol or benzene and is best recrystallized from glacial acetic acid or high boiling solvents such as nitrobenzene or dichlorobenzene. It is very soluble in concentrated sulfuric acid. In methanol, uv absorptions of anthraquinone are at 250 nm (e = 4.98), 270 nm (4.5), and 325 nm (4.02) (4). In the it spectmm, the double aUyflc ketone absorbs at 5.95 p.m (1681 cm ), and the aromatic double bond absorbs at 6.25 p.m (1600 cm ) and 6.30 pm (1587 cm ). [Pg.420]

Nicotinamide is a colorless, crystalline solid. It is very soluble in water (1 g is soluble in 1 mL of water) and in 95% ethanol (1 g is soluble in 1.5 mL of solvent). The compound is soluble in butanol, amyl alcohol, ethylene glycol, acetone, and chloroform, but is only slightly soluble in ether or benzene. Physical properties are Hsted in Table 1. [Pg.47]

Riboflavin forms fine yellow to orange-yeUow needles with a bitter taste from 2 N acetic acid, alcohol, water, or pyridine. It melts with decomposition at 278—279°C (darkens at ca 240°C). The solubihty of riboflavin in water is 10—13 mg/100 mL at 25—27.5°C, and in absolute ethanol 4.5 mg/100 mL at 27.5°C it is slightly soluble in amyl alcohol, cyclohexanol, benzyl alcohol, amyl acetate, and phenol, but insoluble in ether, chloroform, acetone, and benzene. It is very soluble in dilute alkah, but these solutions are unstable. Various polymorphic crystalline forms of riboflavin exhibit variations in physical properties. In aqueous nicotinamide solution at pH 5, solubihty increases from 0.1 to 2.5% as the nicotinamide concentration increases from 5 to 50% (9). [Pg.75]

Antimony Trichloride. Antimony(Ill) chloride [10025-91-9] SbQ3, is a colorless, crystalline soHd, readily soluble in hydrochloric acid water, ca 9% at 25°C, increasing with temperature CHQ3, 22% CQ, 13% benzene CS2 and dioxane. [Pg.203]

Choline Chloride. This compound [67-48-17 is a crystalline dehquescent salt, usually with a slight odor of trimethyl amine (6). It is very soluble in water, freely soluble in alcohol, slightly soluble in acetone and chloroform, and practically insoluble in ether, benzene, and ligroin. Its aqueous solutions ate neutral to litmus and are stable (4). The specific gravity of these solutions is a straight-line function between pure water and the value of 1.10 for the 80% solution, which represents the approximate limit of solubiUty. Choline chloride absorbs moisture from the atmosphere at relative humidities greater than 20% at 25.5°C. [Pg.101]

Choline Dihydrogen Citrate. This compound [77-91 -8] is a white, crystalline, granular substance possessing an acid taste, mp 105—I07.5°C, and is freely soluble in water, very slightly soluble in alcohol, and practically insoluble in benzene, chloroform, and ether. The pH of a 25% solution is about 4.25. [Pg.101]

Acetylcholine [51 -84-3] occurs as the bromide [66-23-9] (Pragmoline) and the chloride [60-31-1] (Acecoline). The chloride is a hygroscopic, crystalline powder. It is very soluble in cold water and alcohol but is practically insoluble in diethyl ether. It is decomposed by hot water and alkahes. Acetylcholine bromide can be prepared by direct reaction of trimethyl amine and P-bromoethyl acetate in benzene (42). [Pg.102]

Amorphous (most likely atactic) 3,4-polyisoprene of 94—100% 3,4-microstmcture was prepared with a (C2H 3A1—Ti(0—/ -C Hy) catalyst (11). Crystalline 3,4-polyisoprene containing about 70% 3,4-units and about 30% i7j -l,4-microstmcture was prepared using a catalyst derived from iron acetyl acetonate, trialkyl aluminum, and an amine in benzene (37). However, this polyisoprene contained gel and was obtained in poor yield. Essentially gel-free crystallizable 3,4-polyisoprene of 70—85% 3,4-microstmcture with the remainder being cis-1,4 microstmcture was prepared in conversions of greater than 95% with a water-modified tri alkyl aluminum, ferric acetyl acetonate, and 1,10-phenanthroline catalyst (38). The 3,4-polyisoprene is stereoregular and beheved to be syndiotactic or isotactic. [Pg.4]


See other pages where Benzene 1-crystallins is mentioned: [Pg.63]    [Pg.203]    [Pg.306]    [Pg.206]    [Pg.430]    [Pg.377]    [Pg.574]    [Pg.716]    [Pg.761]    [Pg.865]    [Pg.922]    [Pg.945]    [Pg.967]    [Pg.211]    [Pg.334]    [Pg.551]    [Pg.69]    [Pg.436]    [Pg.339]    [Pg.67]    [Pg.307]    [Pg.134]    [Pg.429]    [Pg.2]    [Pg.448]    [Pg.35]   
See also in sourсe #XX -- [ Pg.39 , Pg.40 ]




SEARCH



© 2024 chempedia.info