Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Badgering

If a shallow kick off in soft formation is required (e.g. to steer the borehole away underneath platforms) a technique using jet bit deflection or badgering is employed (Fig. 3.16). A rock bit is fitted with two small and one large jet. With the bit on bottom and oriented in the desired direction the string is kept stationary and mud is pumped through the nozzles. This causes asymmetric erosion of the borehole beneath the larger jet. Once sufficient hole has been jetted, the drill bit will be rotated again and the new course followed. This process will be repeated until the planned deviation is reached. [Pg.46]

These operations have been gradually replaced by the Mobd-Badger process (28), which employs an acidic ZSM-5 catalyst and produces ethylbenzene using both pure and dilute ethylene sources. In both cases, the alkylation is accomplished under vapor-phase conditions of about 425°C,... [Pg.459]

Liquid-Ph se Processes. Prior to 1980, commercial hquid-phase processes were based primarily on an AIQ. catalyst. AIQ. systems have been developed since the 1930s by a number of companies, including Dow, BASF, Shell Chemical, Monsanto, SociStH Chimique des Charboimages, and Union Carbide—Badger. These processes generally involve ethyl chloride or occasionally hydrogen chloride as a catalyst promoter. Recycled alkylated ben2enes are combined with the AIQ. and ethyl chloride to form a separate catalyst—complex phase that is heavier than the hydrocarbon phase and can be separated and recycled. [Pg.48]

Vapor-Phase Processes. Although vapor-phase alkylation has been practiced since the early 1940s, it could not compete with Hquid-phase processes until the 1970s when the Mobil—Badger vapor-phase ethylbenzene process was introduced (Eig. 4). The process is based on Mobil s ZSM-5 zeohte catalyst (38,52,53). The nonpoUuting and noncorrosive nature of the process is one of its major advantages over the AlCl hquid-phase system. [Pg.49]

Eig. 4. Mobil—Badger process for ethylbenzene production H = heater Rx = reactor P = prefractionator BC = benzene recovery column ... [Pg.49]

Two catalysts have emerged as commercially viable. The Mobil—Badger ethylbenzene process, which has been in commercial use since 1980, employs a ZeoHte catalyst and operates in the gas phase. A Hquid-phase ethylbenzene process joindy Hcensed by Lummus and UOP uses a Y-type ZeoHte catalyst developed by Unocal. This Hquid-phase process was commercialized in 1990. The same Y-type ZeoHte catalyst used for the production of ethylbenzene is being offered for the production of cumene but has not yet been commercialized. [Pg.53]

Fig. 1. Mobil-Badger vapor-phase ethylbenzene process where PEB = polyethylbenzene. Fig. 1. Mobil-Badger vapor-phase ethylbenzene process where PEB = polyethylbenzene.
Aluminum Chloride-Based All lation. The eadier alkylation processes were variations of the Eriedel-Craft reaction on an aluminum chloride catalyst complex in a Hquid-phase reactor (27), including those developed by Dow Chemical, BASE, Monsanto, and Union Carbide in cooperation with Badger. The Union Carbide-Badger process was the one most widely used during the 1960s and 1970s, with 20 plants built worldwide. [Pg.480]

Other Technologies. Ethylbenzene can be recovered from mixed Cg aromatics by superfractionation. This technology was first practiced by Cosden Oil Chemical Company in 1957 (Big Spring, Texas), based on a design developed jointly with The Badger Company. Several superfractionation... [Pg.480]

Figure 5 illustrates a typical distillation train in a styrene plant. Benzene and toluene by-products are recovered in the overhead of the benzene—toluene column. The bottoms from the benzene—toluene column are distilled in the ethylbenzene recycle column, where the separation of ethylbenzene and styrene is effected. The ethylbenzene, containing up to 3% styrene, is taken overhead and recycled to the dehydrogenation section. The bottoms, which contain styrene, by-products heavier than styrene, polymers, inhibitor, and up to 1000 ppm ethylbenzene, are pumped to the styrene finishing column. The overhead product from this column is purified styrene. The bottoms are further processed in a residue-finishing system to recover additional styrene from the residue, which consists of heavy by-products, polymers, and inhibitor. The residue is used as fuel. The residue-finishing system can be a flash evaporator or a small distillation column. This distillation sequence is used in the Fina-Badger process and the Dow process. [Pg.483]

Fig. 5. Purification of styrene in the dehydrogenation reactor effluent in the FinaBadger styrene process A, ben2ene—toluene column B, ethylbenzene recycle column C, styrene finishing column and D, residue finishing. Courtesy of The Badger Company, Inc. Fig. 5. Purification of styrene in the dehydrogenation reactor effluent in the FinaBadger styrene process A, ben2ene—toluene column B, ethylbenzene recycle column C, styrene finishing column and D, residue finishing. Courtesy of The Badger Company, Inc.
Chevron (St. James, La.) 682 Mobd-Badger ZSM-5 Fina-Badger dehydro... [Pg.485]

The simplest unit employing vacuum fractionation is that designed by Canadian Badger for Dominion Tar and Chemical Company (now Rttgers VFT Inc.) at Hamilton, Ontario (13). In this plant, the tar is dehydrated in the usual manner by heat exchange and injection into a dehydrator. The dry tar is then heated under pressure in an oil-fired hehcal-tube heater and injected directly into the vacuum fractionating column from which a benzole fraction, overhead fraction, various oil fractions as side streams, and a pitch base product are taken. Some alterations were made to the plant in 1991, which allows some pitch properties to be controlled because pitch is the only product the distillate oils are used as fuel. [Pg.336]

In recent years alkylations have been accompHshed with acidic zeoHte catalysts, most nobably ZSM-5. A ZSM-5 ethylbenzene process was commercialized joiatiy by Mobil Co. and Badger America ia 1976 (24). The vapor-phase reaction occurs at temperatures above 370°C over a fixed bed of catalyst at 1.4—2.8 MPa (200—400 psi) with high ethylene space velocities. A typical molar ethylene to benzene ratio is about 1—1.2. The conversion to ethylbenzene is quantitative. The principal advantages of zeoHte-based routes are easy recovery of products, elimination of corrosive or environmentally unacceptable by-products, high product yields and selectivities, and high process heat recovery (25,26). [Pg.40]

ABB Lummus Crest Inc. and Unocal Corp. have Hcensed a benzene alkylation process usiag a proprietary zeoHte catalyst. Unlike the Mobil-Badger process, the Unocal-Lummus process is suitable for either ethylbenzene or cumene manufacture (27,28). [Pg.40]

G. M. Badger, The Structure and Reactions of the Aromatic Compounds, Cambridge University Press, 1957, Chapt. 2, p. 37. [Pg.49]


See other pages where Badgering is mentioned: [Pg.47]    [Pg.370]    [Pg.354]    [Pg.398]    [Pg.542]    [Pg.299]    [Pg.163]    [Pg.506]    [Pg.639]    [Pg.186]    [Pg.228]    [Pg.75]    [Pg.453]    [Pg.55]    [Pg.500]    [Pg.527]    [Pg.478]    [Pg.478]    [Pg.478]    [Pg.479]    [Pg.480]    [Pg.481]    [Pg.481]    [Pg.483]    [Pg.483]    [Pg.483]    [Pg.483]    [Pg.485]    [Pg.491]    [Pg.492]    [Pg.305]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



A Generalization of Badgers Rule

Badger

Badger

Badger Engineering Company

Badger evaporator

Badger, G. M., Sasse, W. H. F., The Action of Metal Catalysts on Pyridines

Badger, G. M., Sasse, W. H. F„ The Action

Badger, Taxidea taxus

Badger-Bauer

Badger-Bauer rule

Badger’s rule

Ethylbenzene Badger process

Ethylbenzene manufacture (Mobil-Badger

European badger

Industrial processes Mobil-Badger process

Mobil Badger process, zeolite catalysts

Mobil-Badger process

Mobil/Badger cumene process

Processes Mobil Badger ethylbenzene

Styrene Fina/Badger process

The Badger Company

© 2024 chempedia.info