Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Backbone structure synthesis

Ligand 92 was readily prepared by reaction of (+)-pinocarvone with 1-phenacylpyridinium iodide. The authors similarly prepared corresponding 5,6-dihydro-1,10-phenanthrolines derived from (+)-pinocarvone and a tetrahydroquinolone (structure 93, [127]) and obtained up to 81% in the palladium-catalyzed test reaction. Chelucci et al. [ 128] reported the synthesis of chiral Ci-symmetric 1,10-phenanthrolines incorporated in asteroid backbone. Structure 94 derived from 5o -cholestan-4-one in Scheme 51, allowed very high yield and up to 96% ee using BSA and tetrabutylammonium fluoride to generate the malonate anion. [Pg.134]

Figure 1. Chromophore (A) and polymeric backbone structures (B) used for synthesis of the polymeric dye... Figure 1. Chromophore (A) and polymeric backbone structures (B) used for synthesis of the polymeric dye...
A substantial effort in our laboratory has been directed toward the synthesis and characterization of acetylene-terminated (AT) matrix resins. The most significant feature and driving force for the effort is that the thermal induced addition reaction provides a moisture Insensitive cured product. This technology offers a wide variety of thermoset resins for various high temperature applications. Backbone structural design for use temperature capabilities, processing characteristics and mechanical performance has demonstrated the versatility of the AT type systems. [Pg.31]

Synthesis and characterization of well-defined, a,w-terminated difunctional siloxane oligomers are discussed. Detailed procedures on the preparation of primary amine- and hydroxy-terminated oligomers are given. Control of the average molecular weight (Mn) and also the possible variations in the backbone structure and composition are explained. The effect of these variations on the physical, thermal and chemical properties of the resulting materials are discussed. Characterization of these oligomers by FT-IR, NMR and UV spectroscopy, potentiometric titration and DSC are summarized. [Pg.161]

The term diversity-oriented synthesis (DOS) is relatively new and, as mentioned above, is usually defined as the synthesis of complex, natural product-like molecules using a combinatorial approach and employing the full palette of modern organic reactions. It may be a subject of discussion what exactly qualifies a molecule as being natural product-like [4], and in most cases the similarity to an actual natural product seems reciprocal to the number of synthesized compounds. However, even in less complex cases, the products may be highly substituted polycyclic structures with defined stereochemistry, reminiscent of natural products [19, 20]. In these cases, a moderately complex backbone structure is subsequently modified with a well-established set of selective reactions to introduce diversity. [Pg.150]

Another problem for biosynthesis concerns the fact that certain other, native plant-polysaccharides, most notably the xyloglucans found in higher-plant cell-walls,6 contain backbone structures of (1— 4)-/3-D-glucan, and it is necessary to consider whether separate enzymes synthesize these structures, and, if so, whether these enzymes could be confused with enzymes specifically involved in the synthesis of cellulose. [Pg.111]

Figure 9.2. Metabolism of pyrrolizidine alkaloids (PAs) in Senecio vernalis. The substrates for alkaloid biosynthesis, putrescine and spermidine, are derived from primary metabolism. Homospermidine, synthesized by homospermidine synthase (HSS), is the first pathway specific intermediate. It is exclusively incorporated into the necine base moiety of senecionine A-oxide, the backbone structure of all PAs found in this Senecio species. During allocation from the roots as site of synthesis to the shoots, it is chemically modified to provide the species specific PA-pattem. Figure 9.2. Metabolism of pyrrolizidine alkaloids (PAs) in Senecio vernalis. The substrates for alkaloid biosynthesis, putrescine and spermidine, are derived from primary metabolism. Homospermidine, synthesized by homospermidine synthase (HSS), is the first pathway specific intermediate. It is exclusively incorporated into the necine base moiety of senecionine A-oxide, the backbone structure of all PAs found in this Senecio species. During allocation from the roots as site of synthesis to the shoots, it is chemically modified to provide the species specific PA-pattem.
In mammalian cells, glucose is the most abundant carbohydrate energy source. It is metabolized in all cells as a glycolytic fuel and is stored in liver and muscle as the polymer glycogen. But certain cells have the enzymes to catalyze the synthesis of glucose under certain conditions. The requirements are (1) the availability of specific carbon skeletons (carbon backbone structures of various types), (2) energy, in the form of ATP, necessary to accomplish the sequence of reactions, and (3) the enzymes to catalyze reactions of the sequence. [Pg.323]

The net negative charge of an oligonucleotide is dependent on length and backbone structure, but for a given synthesis product, AX chromatography is... [Pg.516]

This review focuses on the synthesis, characterization, and performance of monodisperse fluorene-based conjugated oligomers with potential applications to organic electronics and photonics. Included herein are oligomers and co-oligomers that contain at least two fluorene units in their backbone structures, while excluding those with a lone spirofluorene unit without other fluorene units in the backbone, as these have been covered elsewhere [42,43]. [Pg.148]

A variety of CEs with tailorable physico-chemical and thermo-mechanical properties have been synthesized by appropriate selection of the precursor phenol [39,40]. The physical characteristics like melting point and processing window, dielectric characteristics, environmental stability, and thermo-mechanical characteristics largely depend on the backbone structure. Several cyanate ester systems bearing elements such as P, S, F, Br, etc. have been reported [39-41,45-47]. Mainly three approaches can be seen. While dicyanate esters are based on simple diphenols, cyanate telechelics are derived from phenol telechelic polymers whose basic properties are dictated by the backbone structure. The terminal cyanate groups serve as crosslinking sites. The polycyanate esters are obtained by cyanation of polyhydric polymers which, in turn, are synthesized by suitable synthesis protocols. Thus, in addition to the bisphenol-based CEs, other types like cyanate esters of novolacs [37,48], polystyrene [49], resorcinol [36], tert-butyl, and cyano substituted phenols [50], poly cyanate esters with hydrophobic cycloaliphatic backbone [51], and allyl-functionalized cyanate esters [52] have been reported. [Pg.12]

The methodology of solid phase peptide synthesis (SPPS) [65, 66] has been credited with the award of 1984 Nobel Prize in chemistry [67] to its inventor, Bruce R. Merrifield of the Rockefeller University. At the heart of the SPPS lies an insoluble polymer support or gel , which renders the synthetic peptide intermediates insoluble, and hence readily separable from excess reagents and by-products. In addition to peptide synthesis, beaded polymer gels are also being studied for a number of other synthetic and catalytic reactions [2]. Ideally, the polymer support should be chemically inert and not interfere with the chemistry under investigation. The provision of chemical inertiKss presents no difficulty, but the backbone structure of the polymer may profoundly influence the course of the reaction on the polymer support. This topic has attracted considerable interest, particularly in relation to the properties of polystyrene (nonpolar, hydrophobic), polydimethylacrylamide (polar, hydrophilic), and copoIy(styrene-dimethylaciylamide) (polar-nonpolar, amphiphilic) (see later). [Pg.19]

Synthesis of highly crowded graft copolymers with graft frequencies of up to 50% of the total monomeric units in approximately alternate positions on the polymer backbone (structure 24). [Pg.30]

As mentioned in the introduction, the tubular materials are fascinating new structures with a considerable potential for various applications. Most of the nanotubes investigated to date have been carbon-based nanotubes. In this chapter, we have discussed the properties of various nanotubes with a silicon or germanium backbone structure. Most of these nanotubes are still hypothetical, "made" only in the computer. We proposed the stability of phosphorus nanotubes, and about a year later Li et al. reported the successful synthesis of nanotubes from bismuth, which is isoelectronic with phosphorus. The stability of NbS2 nanotubes was also proposed in 2000, and these were synthesized by Nath and Rao in 2001... [Pg.239]


See other pages where Backbone structure synthesis is mentioned: [Pg.597]    [Pg.8]    [Pg.21]    [Pg.47]    [Pg.168]    [Pg.185]    [Pg.286]    [Pg.360]    [Pg.166]    [Pg.30]    [Pg.243]    [Pg.243]    [Pg.249]    [Pg.209]    [Pg.259]    [Pg.164]    [Pg.79]    [Pg.111]    [Pg.211]    [Pg.128]    [Pg.167]    [Pg.316]    [Pg.753]    [Pg.31]    [Pg.1727]    [Pg.20]    [Pg.59]    [Pg.177]    [Pg.360]    [Pg.1]    [Pg.89]    [Pg.122]    [Pg.335]    [Pg.717]    [Pg.403]   
See also in sourсe #XX -- [ Pg.288 , Pg.292 , Pg.301 ]




SEARCH



Backbone structures

Backbone structures polymer synthesis

Structural backbone

© 2024 chempedia.info