Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Availability thermodynamic and

The proposed photochemical reaction mechanism shown in Figure 4 accounts for the observations we have reported and is in accord with presently available thermodynamic and... [Pg.171]

This chapter considers the oxidation of iodide in seawater by natural oxidants (02, H202, and 03). The oxidation of iodide to iodate is considered slow, yet the six-electron T-IOj redox couple normally used to represent the process (or predict stability) is thermodynamically favorable (2). We will discuss both one- and two-electron-transfer processes with these oxidants, focusing on the first step of electron transfer and using the frontier molecular orbital theory approach in conjunction with available thermodynamic and kinetic data. The analysis shows that the chemical oxidation of I to I03 is not a very important process in seawater, except perhaps at the surface microlayer. [Pg.136]

Quantitative analysis of different reaction pathways for the transformation of aquated sulfur dioxide in atmospheric droplet systems has been a major objective of the research conducted in the principal investigator s laboratory for the last four years. Available thermodynamic and kinetic data for the aqueous-phase reactions of SO2 have been incorporated into a dynamic model of the chemistry of urban fog that has been developed by Jacob and Hoffmann (23) and Hoffmann and Calvert (39). The fog and cloud water models developed by them are hybrid kinetic and equilibrium models that consider the major chemical reactions likely to take place in atmospheric water droplets. Model results have verified that... [Pg.76]

Currently available thermodynamic and kinetic data bases are incomplete to support quantitative modeling of many corrosion systems, particularly those where predictions of behavior under extreme conditions or over extended periods of time are desired. Because the unavailability of data limits the use of models, a critical need exists to upgrade and expand the sources of information on the thermodynamic properties of chemical species, exchange current densities, activity coefficients, rate constants, diffusion coefficients, and transport numbers, particularly where concentrated electrolytes under extreme conditions are involved. Many of these data are obtained in disciplines that traditionally have been on the periphery of corrosion science, so it will be necessary to encourage interdisciplinary collaboration to meet the need. [Pg.73]

Carbon alkylations are generally exothermic. The heat of reaction can be determined using the available thermodynamic and physical properties. These heats are used in designing reactors and auxiliary heat exchangers. [Pg.820]

Experimental data to test theoretical procedures is often not available. Thermodynamic and transport data on mixtures containing hydrogen and acid gases (HCl, NH3, S02> etc.) would be very useful. Dense gas data are generally not available. Accurate measurements over wide ranges of temperature and density are especially useful. [Pg.368]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
Available data on the thermodynamic and transport properties of carbon dioxide have been reviewed and tables compiled giving specific volume, enthalpy, and entropy values for carbon dioxide at temperatures from 255 K to 1088 K and at pressures from atmospheric to 27,600 kPa (4,000 psia). Diagrams of compressibiHty factor, specific heat at constant pressure, specific heat at constant volume, specific heat ratio, velocity of sound in carbon dioxide, viscosity, and thermal conductivity have also been prepared (5). [Pg.18]

Studies on metal-pyrazole complexes in solution are few. The enthalpy and entropy of association of Co(II), Ni(II), Cu(II) and Zn(II) with pyrazole in aqueous solution have been determined by direct calorimetry (81MI40406). The nature of the nitrogen atom, pyridinic or pyrrolic, involved in the coordination with the metal cannot be determined from the available thermodynamic data. However, other experiments in solution (Section 4.04.1.3.3(i)) prove conclusively that only the N-2 atom has coordinating capabilities. [Pg.226]

A gaseous emission has a flowrate of 0.02 kmole/s and contains 0.014 mole fraction of vinyl chloride. The supply temperature of the stream is 338 K. It is desired to recover 80% of the vinyl chloride using a combination of pressurization and cooling. Available for service are two refrigerants NH3 and Nj. Thermodynamic and economic data are provided by problem 10.1 and by Dunn etal. (1995), Design a cost-effective energy-induced separation system. [Pg.260]

The thermodynamic and other physical properties of binary oxides (e.g. A//f, AGf, mp, etc.) show characteristic trends and variations when plotted as a function of atomic number, and the preparation of such plots using readily available compilations of data can be a revealing and rewarding exercise. [Pg.641]

The numbers iVj and N- are only equal if there are no degeneracies. The sum in the denominator runs over all available molecular energy levels and it is called the molecular partition function. It is a quantity of immense importance in statistical thermodynamics, and it is given the special symbol q (sometimes z). We have... [Pg.61]

The ANN as a predictive tool is most effective only within the trained range of input training variables. Those predictions that fall outside the trained range must be considered to be of questionable validity. Even so, whenever experimental data are available for validation, neural networks can be put to effective use. Since an extensive experimental body of data on polymers has been published in the literature, the application of neural networks as a predictive tool for physical, thermodynamic, and other fluid properties is, therefore, promising. It is a novel technique that will continue to be used, and it deserves additional investigation and development. [Pg.32]

The equilibrium ratios of hydrogen-to-hydrogen sulfide for the reaction, derived (34) from available thermodynamic data (35), are plotted in Figure 10 as a function of temperature. When Ph2/Ph2s over the catalyst is less than the equilibrium value, the nickel can be sulfided and hence poisoned. Conversely, when this ratio is greater than the equi-... [Pg.25]

Compounds with Chlorine. The available thermodynamic data on plutonium chlorides and related species are listed in Table II. [Pg.84]

Reliable data on the thermodynamic and phase relationships of actinide oxide systems are essential for reactor safety analysis. This paper reviews certain aspects of thermodynamic data currently available on the nonstoichiometric Pu-0 system, which may serve as a basis for use in reactor safety analysis. Emphasis is placed on phase relationships, vaporization behavior, oxygen-potential measurements, and evaluation of pertinent thermodynamic quantities. [Pg.113]

We can show that the thermodynamic and statistical entropies are equivalent by examining the isothermal expansion of an ideal gas. We have seen that the thermodynamic entropy of an ideal gas increases when it expands isothermally (Eq. 3). If we suppose that the number of microstates available to a single molecule is proportional to the volume available to it, we can write W = constant X V. For N molecules, the number of microstates is proportional to the Nth power of the volume ... [Pg.400]

With the development of new instrumental techniques, much new information on the size and shape of aqueous micelles has become available. The inceptive description of the micelle as a spherical agglomerate of 20-100 monomers, 12-30 in radius (JJ, with a liquid hydrocarbon interior, has been considerably refined in recent years by spectroscopic (e.g. nmr, fluorescence decay, quasielastic light-scattering), hydrodynamic (e.g. viscometry, centrifugation) and classical light-scattering and osmometry studies. From these investigations have developed plausible descriptions of the thermodynamic and kinetic states of micellar micro-environments, as well as an appreciation of the plurality of micelle size and shape. [Pg.225]


See other pages where Availability thermodynamic and is mentioned: [Pg.397]    [Pg.168]    [Pg.72]    [Pg.397]    [Pg.256]    [Pg.299]    [Pg.397]    [Pg.168]    [Pg.72]    [Pg.397]    [Pg.256]    [Pg.299]    [Pg.366]    [Pg.94]    [Pg.7]    [Pg.273]    [Pg.162]    [Pg.74]    [Pg.155]    [Pg.248]    [Pg.49]    [Pg.354]    [Pg.910]    [Pg.160]    [Pg.460]    [Pg.626]    [Pg.443]    [Pg.577]    [Pg.174]    [Pg.83]    [Pg.88]    [Pg.219]    [Pg.420]    [Pg.339]    [Pg.335]    [Pg.159]    [Pg.408]    [Pg.444]   


SEARCH



Thermodynamic and electrochemical availability

Thermodynamic availability

Thermodynamics available

© 2024 chempedia.info