Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attenuated total reflectance, analysis

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

For on-bead analysis vibrational spectroscopy (IR-spectroscopy) can be employed attenuated total reflection is a method allowing fast and nondestructive on-bead analysis of small samples (single bead analysis) without significant sample preparation. Solid phase NMR is the method of choice if complex structural analysis is intended on the support. Spatially resolved analysis on the resin is possible with microscopic techniques. [Pg.383]

Heinen M, Jusys Z, Behm RJ. 2009. Reaction pathways analysis and reaction intermediate detection via simultaneous differential electrochemical mass spectrometry (DBMS) and attenuated total reflection Bourier transform infrared spectroscopy (ATR-BTIRS). In Vielstich W, Gasteiger HA, Yokokawa H, eds. Handbook of Buel Cells. Volume 5 Advances in Electrocatalysis. Chichester John Wiley Sons, Ltd., in press. [Pg.457]

FTIR instrumentation is mature. A typical routine mid-IR spectrometer has KBr optics, best resolution of around 1cm-1, and a room temperature DTGS detector. Noise levels below 0.1 % T peak-to-peak can be achieved in a few seconds. The sample compartment will accommodate a variety of sampling accessories such as those for ATR (attenuated total reflection) and diffuse reflection. At present, IR spectra can be obtained with fast and very fast FTIR interferometers with microscopes, in reflection and microreflection, in diffusion, at very low or very high temperatures, in dilute solutions, etc. Hyphenated IR techniques such as PyFTIR, TG-FTIR, GC-FTIR, HPLC-FTIR and SEC-FTIR (Chapter 7) can simplify many problems and streamline the selection process by doing multiple analyses with one sampling. Solvent absorbance limits flow-through IR spectroscopy cells so as to make them impractical for polymer analysis. Advanced FTIR... [Pg.316]

Fixed pathlength transmission flow-cells for aqueous solution analysis are easily clogged. Attenuated total reflectance (ATR) provides an alternative method for aqueous solution analysis that avoids this problem. Sabo et al. [493] have reported the first application of an ATR flow-cell for both NPLC and RPLC-FUR. In micro-ATR-IR spectroscopy coupled to HPLC, the trapped effluent of the HPLC separation is added dropwise to the ATR crystal, where the chromatographic solvent is evaporated and the sample is enriched relative to the solution [494], Detection limits are not optimal. The ATR flow-cell is clearly inferior to other interfaces. [Pg.491]

Recently, polyethylene and Teflon mesh sample holders have been used. A drop of sample is placed on the mesh and spread to a relatively uniform thickness for analysis. These holders can often be rinsed and reused. A very convenient alternative to liquid sample holders is the technique called attenuated total reflection or ATR. The ATR cell is a crystal of gallium arsenide, GaAs and the infrared radiation enters one end of the trapezoidal crystal. With the angles adjusted to obtain total internal reflection, all of the IR radiation passes through the crystal and exits the other end as shown in Fig. 5.14. [Pg.145]

The analysis of gas plasma-modified polydimethylsiloxane elastomer surfaces using attenuated total-reflectance FTIR spectroscopy was discussed.636... [Pg.684]

Gaboury, S. R. Urban, M. W. Analysis of Gas-Plasma-Modified Poly(Dimethylsiloxane) Elastomer Surfaces. Attenuated-Total-Reflectance-Fourier Transform Infrared Spectroscopy. In Structure-Property Relations in Polymers Urban, M. W., Graver, C. D., Eds. Advances in Chemistry Series 236 American Chemical Society Washington, DC, 1993 pp 777-790. [Pg.698]

The infrared technique has been described in numerous publications and recent reviews were published by Davies and Giangiacomo (2000), Ismail et al. (1997) and Wetzel (1998). Very few applications have been described for analysis of additives in food products. One interesting application is for controlling vitamin concentrations in vitamin premixes used for fortification of food products by attenuated total reflectance (ATR) accessory with Fourier transform infrared (FTIR) (Wojciechowski et al., 1998). Four vitamins were analysed - Bi (thiamin), B2 (riboflavin), B6 (vitamin B6 compounds) and Niacin (nicotinic acid) - in about 10 minutes. The partial least squares technique was used for calibration of the equipment. The precision of measurements was in the range 4-8%, similar to those obtained for the four vitamins by the reference HPLC method. [Pg.130]

The ability to recover monolayers and subject them to meaningful analysis has become practical only in recent years because of the development of new methods of trace analysis. High-performance liquid chromatography and vapor phase chromatography allow separation and identification of such small quantities (54a). Attenuated total reflectance techniques for infrared analysis (56) and field desorption mass spectrometry (68) have been applied to the trans-... [Pg.213]

Castillo, E. J., Koenig, J. L., Anderson, J. M., Kliment, C. K., and Lo, J. Surface analysis of biomedical polymers by attenuated total reflectance-fourier transform infra-red. Biomaterials 1984, 5(4), 186-193. [Pg.234]

ATR-FTIR attenuated total reflectance Fourier transform infrared spectroscopy TGA thermal gravimetric analysis... [Pg.126]

Many techniques are based on this principle and can be used for the analysis of all types of samples. The spectrum obtained from reflected light is not identical to that obtained by transmittance. The spectral composition of the reflected beam depends on the variation of the refractive index of the compound with wavelength. This can lead to specular reflection, diffuse reflection or attenuated total reflection. Each device is designed to favour only one of the above. The recorded spectrum must be corrected using computer software. [Pg.178]

X-ray photoelectron spectroscopy (XPS) was used for elemental analysis of plasma-deposited polymer films. The photoelectron spectrometer (Physical Electronics, Model 548) was used with an X-ray source of Mg Ka (1253.6 eV). Fourier transform infrared (FTIR) spectra of plasma polymers deposited on the steel substrate were recorded on a Perkin-Elmer Model 1750 spectrophotometer using the attenuated total reflection (ATR) technique. The silane plasma-deposited steel sample was cut to match precisely the surface of the reflection element, which was a high refractive index KRS-5 crystal. [Pg.463]

Kocaoglu-Vurma, N. A., Eliardi, A., Drake, M. A., Rodriguez-Saona, L. E., and Harper, L. E. (2009). Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis. J. Food Sci. 74, S232-S239. [Pg.207]

More significantly, when calorimetry is combined with an integral kinetic analysis method, e.g. a spectroscopic technique, we have an expanded and extremely sophisticated method for the characterisation of chemical reactions. And when the calorimetric method is linked to FTIR spectroscopy (in particular, attenuated total reflectance IR spectroscopy, IR-ATR), structural as well as kinetic and thermodynamic information becomes available for the investigation of organic reactions. We devote much of Chapter 8 to this new development, and the discussion will focus on reaction calorimeters of a size able to mimic production-scale reactors of the corresponding industrial processes. [Pg.11]


See other pages where Attenuated total reflectance, analysis is mentioned: [Pg.393]    [Pg.314]    [Pg.515]    [Pg.353]    [Pg.289]    [Pg.236]    [Pg.10]    [Pg.497]    [Pg.317]    [Pg.740]    [Pg.7]    [Pg.266]    [Pg.317]    [Pg.391]    [Pg.624]    [Pg.32]    [Pg.228]    [Pg.441]    [Pg.21]    [Pg.683]    [Pg.102]    [Pg.221]    [Pg.683]    [Pg.366]    [Pg.149]    [Pg.421]    [Pg.100]    [Pg.235]    [Pg.424]    [Pg.468]    [Pg.452]   


SEARCH



ATTENUATED TOTAL

Attenuated total reflectance

Attenuated total reflectance Attenuation

Attenuated total reflectance Fourier analysis

Attenuation total reflection

Attenuator attenuated total reflection

Reflection, attenuated total

Reflectivity total

Total reflection

© 2024 chempedia.info