Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atom motions time dependence

As reactants transfonn to products in a chemical reaction, reactant bonds are broken and refomied for the products. Different theoretical models are used to describe this process ranging from time-dependent classical or quantum dynamics [1,2], in which the motions of individual atoms are propagated, to models based on the postidates of statistical mechanics [3], The validity of the latter models depends on whether statistical mechanical treatments represent the actual nature of the atomic motions during the chemical reaction. Such a statistical mechanical description has been widely used in imimolecular kinetics [4] and appears to be an accurate model for many reactions. It is particularly instructive to discuss statistical models for unimolecular reactions, since the model may be fomuilated at the elementary microcanonical level and then averaged to obtain the canonical model. [Pg.1006]

In molecular dynamics applications there is a growing interest in mixed quantum-classical models various kinds of which have been proposed in the current literature. We will concentrate on two of these models the adiabatic or time-dependent Born-Oppenheimer (BO) model, [8, 13], and the so-called QCMD model. Both models describe most atoms of the molecular system by the means of classical mechanics but an important, small portion of the system by the means of a wavefunction. In the BO model this wavefunction is adiabatically coupled to the classical motion while the QCMD model consists of a singularly perturbed Schrddinger equation nonlinearly coupled to classical Newtonian equations, 2.2. [Pg.380]

Molecular dynamics is a simulation of the time-dependent behavior of a molecular system, such as vibrational motion or Brownian motion. It requires a way to compute the energy of the system, most often using a molecular mechanics calculation. This energy expression is used to compute the forces on the atoms for any given geometry. The steps in a molecular dynamics simulation of an equilibrium system are as follows ... [Pg.60]

The temporal behavior of molecules, which are quantum mechanical entities, is best described by the quantum mechanical equation of motion, i.e., the time-dependent Schrdd-inger equation. However, because this equation is extremely difficult to solve for large systems, a simpler classical mechanical description is often used to approximate the motion executed by the molecule s heavy atoms. Thus, in most computational studies of biomolecules, it is the classical mechanics Newtonian equation of motion that is being solved rather than the quantum mechanical equation. [Pg.42]

The X-ray and neutron scattering processes provide relatively direct spatial information on atomic motions via detennination of the wave vector transferred between the photon/neutron and the sample this is a Fourier transfonn relationship between wave vectors in reciprocal space and position vectors in real space. Neutrons, by virtue of the possibility of resolving their energy transfers, can also give infonnation on the time dependence of the motions involved. [Pg.238]

It has been recognized that the behavior of atomic friction, such as stick-slip, creep, and velocity dependence, can be understood in terms of the energy structure of multistable states and noise activated motion. Noises like thermal activities may cause the atom to jump even before AUq becomes zero, but the time when the atom is activated depends on sliding velocity in such a way that for a given energy barrier, AI/q the probability of activation increases with decreasing velocity. It has been demonstrated [14] that the mechanism of noise activation leads to "the velocity... [Pg.175]

The first two chapters serve as an introduction to quantum theory. It is assumed that the student has already been exposed to elementary quantum mechanics and to the historical events that led to its development in an undergraduate physical chemistry course or in a course on atomic physics. Accordingly, the historical development of quantum theory is not covered. To serve as a rationale for the postulates of quantum theory, Chapter 1 discusses wave motion and wave packets and then relates particle motion to wave motion. In Chapter 2 the time-dependent and time-independent Schrodinger equations are introduced along with a discussion of wave functions for particles in a potential field. Some instructors may wish to omit the first or both of these chapters or to present abbreviated versions. [Pg.361]

When normal sites in a crystal structure are replaced by impurity atoms, or vacancies, or interstitial atoms, the local electronic structure is disturbed and local electronic states are introduced. Now when a dislocation kink moves into such a site, its energy changes, not by a minute amount but by some significant amount. The resistance to further motion is best described as an increase in the local viscosity coefficient, remembering that plastic deformation is time dependent. A viscosity coefficient, q relates a rate d8/dt with a stress, x ... [Pg.88]

A first impression of collective lattice vibrations in a crystal is obtained by considering one-dimensional chains of atoms. Let us first consider a chain with only one type of atom. The interaction between the atoms is represented by a harmonic force with force constant K. A schematic representation is displayed in Figure 8.4. The average interatomic distance at equilibrium is a, and the equilibrium rest position of atom n is thus un =na. The motion of the chain of atoms is described by the time-dependent displacement of the atoms, un(t), relative to their rest positions. We assume that each atom only feels the force from its two neighbours. The resultant restoring force (F) acting on the nth atom of the one dimensional chain is now in the harmonic approximation... [Pg.235]

Some authors have described the time evolution of the system by more general methods than time-dependent perturbation theory. For example, War-shel and co-workers have attempted to calculate the evolution of the function /(r, Q, t) defined by Eq. (3) by a semi-classical method [44, 96] the probability for the system to occupy state v]/, is obtained by considering the fluctuations of the energy gap between and 11, which are induced by the trajectories of all the atoms of the system. These trajectories are generated through molecular dynamics models based on classical equations of motion. This method was in particular applied to simulate the kinetics of the primary electron transfer process in the bacterial reaction center [97]. Mikkelsen and Ratner have recently proposed a very different approach to the electron transfer problem, in which the time evolution of the system is described by a time-dependent statistical density operator [98, 99]. [Pg.22]

Tully has discussed how the classical-path method, used originally for gas-phase collisions, can be applied to the study of atom-surface collisions. It is assumed that the motion of the atomic nucleus is associated with an effective potential energy surface and can be treated classically, thus leading to a classical trajectory R(t). The total Hamiltonian for the system can then be reduced to one for electronic motion only, associated with an electronic Hamiltonian Jf(R) = Jf t) which, as indicated, depends parametrically on the nuclear position and through that on time. Therefore, the problem becomes one of solving a time-dependent Schrodinger equation ... [Pg.339]

At the most fundamental level one follows the time development of the system in detail. The reactants are started in a specific initial (quantum) state and the equation of motion are propagated to give the final state. The equation of motion of the system is the time dependent Schroinger equation, or, if the atoms involved are heavy enough (not H or Li) Newtons equation. The starting point is the adiabatic potential energy surface on which the process takes place. For some reactions electronic excitations during the reaction are important and must be included in addition to the electronically adiabatic dynamics. [Pg.83]

The computational efficiency of a FF approach also enables simulations of dynamical behavior—molecular dynamics (MD). In MD, the classical equations of motion for a system of N atoms are solved to generate a search in phase space, or trajectory, under specified thermodynamic conditions (e.g., constant temperature or constant pressure). The trajectory provides configurational and momentum information for each atom from which thermodynamic properties such as the free energy, or time-dependent properties such as diffusion coefficients, can be calculated. [Pg.4]

The exact disposition of the side chains in a globular protein is difficult to define in solution. Although it is likely that the peptide main chain (backbone) of the protein is relatively rigid, the side chains have been shown to be undergoing motion of several different types (see lysozyme, peroxidase, and carboxypeptidase). This means that the full definition of atomic positions in the structure requires a knowledge of the time dependence of their coordinates. The motion of side chains is likely to be different in the crystal and solution states, but this difference may well... [Pg.90]

Physically this description corresponds to putting an atom (mass M) in an external time-dependent harmonic potential (frequency co0). The potential relaxes exponentially in time (time constant l/x0) so that eventually the atom experiences only a frictional force. Compared with other models2 which have been proposed for neutron scattering calculation, the present model treats oscillatory and diffusive motions of an atom in terms of a single equation. Both types of motion are governed by the shape of the potential and the manner in which it decays. The model yields the same velocity auto-correlation function v /(r) as that obtained by Berne, Boon, and Rice2 using the memory function approach. [Pg.129]


See other pages where Atom motions time dependence is mentioned: [Pg.539]    [Pg.1063]    [Pg.245]    [Pg.470]    [Pg.494]    [Pg.319]    [Pg.86]    [Pg.2]    [Pg.11]    [Pg.226]    [Pg.326]    [Pg.315]    [Pg.444]    [Pg.455]    [Pg.456]    [Pg.331]    [Pg.134]    [Pg.303]    [Pg.72]    [Pg.85]    [Pg.35]    [Pg.98]    [Pg.206]    [Pg.328]    [Pg.165]    [Pg.413]    [Pg.687]    [Pg.67]    [Pg.92]    [Pg.128]    [Pg.312]    [Pg.57]    [Pg.190]    [Pg.60]   
See also in sourсe #XX -- [ Pg.84 , Pg.85 , Pg.86 ]




SEARCH



Atom motions

Atomic motion

Motion time

Time-dependent motion

© 2024 chempedia.info