Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric cyanide addition

The only notable success to date in the use of (salen)metal systems in catalysis of asymmetric cyanide addition to epoxides was achieved by Pietrusiewicz, who reported the aluminium-catalyzed desymmetrization of phospholene meso-epoxide (Scheme 7.23) in moderate ee [47]. Despite these significant efforts, a truly prac-... [Pg.243]

Catalytic asymmetric cyanide addition to imines constitutes an important C—C bondforming reaction, as the product amino nitriles may be converted to non-proteogenic a-amino acids. Kobayashi and co-workers have developed two different versions of the Zr-catalyzed amino nitrile synthesis [73]. The first variant is summarized in Scheme 6.22. The bimetallic complex 65, formed from two molecules of 6-Br-binol and one molecule of 2-Br-binol in the presence of two molecules of Zr(OtBu)4 and N-methylimidazole, was proposed as the active catalytic species. This hypothesis was based on various NMR studies more rigorous kinetic data are not as yet available. Nonetheless, as depicted in Scheme 6.22, reaction of o-hydroxyl imine 66 with 5 mol% 65 and 1—1.5 equiv. Bu3SnCN (CH2C12, —45 °C) leads to the formation of amino nitrile 67 with 91 % ee and in 92 % isolated yield. As is also shown in Scheme 6.22, electron-withdrawing (— 68) and electron-rich (—> 69), as well as more sterically hindered aryl substituents (— 70) readily undergo asymmetric cyanide addition. [Pg.204]

To enhance the efficiency of the cyanide addition, these workers subsequently reported a three-component asymmetric synthesis of amino nitriles that avoids the use of the previously mentioned undesirable stannane [74], Thus, as illustrated in Scheme 6.23, treatment of the requisite aniline and aldehyde with HCN (toxic but cheap and suitable for industrial use) at —45°C in the presence of 2.5 mol% 65 leads to the formation of 67 with 86 % ee and in 80 % yield. As was mentioned above in the context of catalytic asymmetric three-component alkylations of imines (see Scheme 6.18), the in situ procedure is particularly useful for the less stable aliphatic substrates (cf. 71—73, Scheme 6.23). The introduction of the o-Me group on the aniline is reported to lead to higher levels of asymmetric induction, perhaps because with the sterically less demanding aliphatic systems, the imine can exist as a mixture of interconverting cis and trans isomers. [Pg.204]

In addition to Evans CuflD-catalyzed and Carreira s Ti-catalyzed asymmetric aldol reactions, there is omit Shibasaki s La-catalyzed protocol1141 A recent total synthesis of one of the more celebrated targets of the nineties, epothilone A, utilizes both an enan-tioseledive Al-catalyzed cyanide addition to an aldehyde (75 —> 77) and a La-catalyzed enantioseled-... [Pg.151]

Optically active a-amino acids are prepared by a cyanide addition to imines, known as the Strecker reaction. Several organobase catalysts and metal complex catalysts have been successfully applied to the asymmetric catalytic Strecker amino... [Pg.120]

The use of oxazolines as chiral auxiliaries for asymmetric Michael additions has yielded mixed results. For example, Langlois group reported modest dia-stereoselectivities (up to 60% de) for cyanide addition to a number of chiral... [Pg.445]

The potential substrates for the Strecker reaction fall into two categories ald-imines (derived from aldehydes, for which cyanide addition results in formation of a tertiary stereocenter) and ketoimines (derived from ketones, for which addition results in a quaternary stereocenter). As in the case of carbonyl cyanation, significant differences are observed between the substrate subclasses. To date, while a few catalyst systems have been found to display broad substrate scope with respect to aldimine substrates, successful Strecker reactions of ketoimines have been reported in only two cases. As is the case for all asymmetric catalytic methodologies, the breadth of the substrate scope constitutes a crucial criterion for the application of the Strecker reaction to a previously unexplored substrate. [Pg.122]

Shibasaki and co-workers applied (BINOL)Al(III)-derived catalyst 5a, previously developed for the cyanation of aldehydes [28], to the asymmetric Strecker reaction. This catalyst proved to be highly enantioselective for both aromatic and a,p-unsaturated acyclic aldimines (>86% ee for most substrates) (Scheme 8) [63-65]. Aliphatic aldimines underwent cyanide addition with lower levels of enantioselectivity (70-80% ee). A significant distinction of 5 relative to other catalysts is, undoubtedly, its successful application to the hydrocyanation of quinolines and isoquinolines, followed by in situ protection of the sensitive cx-amino nitrile formed (this variant of the Strecker reaction is also known as the Reissert reaction [66]). Thus, Shibasaki has shown that high enantioselectivities (>80% ee for most substrates) and good yields are generally obtainable in the Reissert reaction catalyzed by 5b [67,68]. When applied to 1-substituted... [Pg.124]

As the follow up to our studies in connection to the development of Ti-cat-alyzed cyanide additions to meso epoxides [4], we developed the corresponding catalytic enantioselective additions to imines [5]. A representative example is shown in Scheme 1 chiral non-racemic products maybe readily converted to the derived cx-amino acids (not available through catalytic asymmetric hydrogenation methods). In these studies, we further developed and utilized the positional optimization approach effected by examination of parallel libraries of amino acid-based chiral ligands (e.g., 1 and 2). Thus, the facile modularity of these ligands and their ease of synthesis were further exploited towards the development of a new catalytic enantioselective method that delivers various ar-... [Pg.172]

Two other types of catalysts have been investigated for the enantioselective Strecker-type reactions. Chiral N-oxide catalyst 24 has been utilized in the trimethylsilyl cyanide promoted addition to aldimines to afford the corresponding aminonitriles with enantioselectivities up to 73% ee [14]. Electron-deficient aldimines were the best substrates, but unfortunately an equimolar amount of catalyst 24 was used in these reactions. The asymmetric Strecker addition of trimethylsilyl cyanide to a ketimine with titanium-based BINOL catalyst 25 gave fast conversions to quarternary aminonitriles with enantiomeric excesses to 59%... [Pg.191]

Synthesis of Optically Active Epoxides. Alkaloids and alkaloid salts have been successfully used as catalysts for the asymmetric synthesis of epoxides. The use of chiral catalysts such as quinine or quinium benzylchloride (QUIBEC) have allowed access to optically active epoxides through a variety of reaction conditions, including oxidation using Hydrogen Peroxide (eq 5), Darzens condensations (eq 6), epoxidation of ketones by Sodium Hypochlorite (eq 7), halohydrin ring closure (eq 8), and cyanide addition to a-halo ketones (eq 9). Although the relative stereochemistry of most of the products has not been determined, enan-tiomerically enriched materials have been isolated. A more recent example has been published in which optically active 2,3-epoxycyclohexanone has been synthesized by oxidation with t-Butyl Hydroperoxide in the presence of QUIBEC and the absolute stereochemistry of the product established (eq 10). ... [Pg.498]

This section reviews the literature on asymmetric carbonyl additions and reductions mediated by chiral aluminum Lewis acids. This does not include aldol reactions, cycloaddition reactions, and ene reactions, each of which will be covered in separate sections. The earliest such carbonyl addition reaction to be reported was, along with the Muikaiyama aldol reaction of ketene acetal 7 (Sch. 2), the addition of trimethylsi-lyl cyanide to o-valeraldehyde [6]. The catalyst 13 did not result in asymmetric induction as high in this reaction as it did with the Muikaiyama aldol reaction of ketene acetal 7 with wo-valeraldehyde (Sch. 2). The cyanohydrin 45 was isolated in 65 % yield as a 66 34 mixture of enantiomers only. [Pg.286]

In the presence of 168 a (9mol%) and a phosphine oxide (Bu),P(O) and Ph2P(O)Me for aromatic and ahphatic aldehydes, respectively, 36 mol%), slow addition of TMSCN achieves excellent enantioselectivity with a wide range of aldehydes (86-100%, 83-98% ee). The Al complex has been proposed to work as a bifunctional catalyst for dual activation of the two reactants - the Lewis acidic Al center enhances the electrophilicity of aldehydes and the Lewis basic phosphine oxide induces cyanide addition by nucleophihc activation (Scheme 10.240). This catalytic asymmetric cyanosilylation has been used for the total synthesis of epothilones [652]. [Pg.555]

One asymmetric Strecker reaction1 uses the enantiomerically pure amine 8, available as both enantiomers since it is easily prepared by resolution (chapter 24), as a way to make the imine 2 have diastereotopic faces. Cyanide addition is reasonably diastereoselective giving mainly the amino nitrile 9. [Pg.600]

Enantioselective vanadium and niobium catalysts provide chemists with new and powerful tools for the efficient preparation of optically active molecules. Over the past few decades, the use of vanadium and niobium catalysts has been extended to a variety of different and complementaiy asymmetric reactions. These reactions include cyanide additions, oxidative coupling of 2-naphthols, Friedel-Crafts-type reactions, pinacol couplings, Diels-Alder reactions, Mannich-type reactions, desymmetrisation of epoxides and aziridines, hydroaminations, hydroaminoalkylations, sulfoxida-tions, epoxidations, and oxidation of a-hydroxy carbo) lates Thus, their major applications are in Lewis acid-based chemistiy and redox chemistry. In particular, vanadium is attractive as a metal catalyst in organic synthesis because of its natural abundance as well as its relatively low toxicity and moisture sensitivity compared with other metals. The fact that vanadium is present in nature in equal abundance to zinc (albeit in a more widely distributed form and more difficult to access) is not widely appreciated. Inspired by the activation of substrates in nature [e.g. bromoperoxidase. [Pg.216]

Cyanide addition to the lactamic carbonyl group has been described in a reaction in which the cyanide ion acts as a catalyst (Fig. 14).The intermediate acyl cyanide can be attacked by an added nucleophile (allylic, propargylic, benzylic alcohols, aniline, benzylmercaptan). Comparative experiments were carried out using more classical procedures, such as under catalysis by potassium cyanide with stirring at room temperature, and with sodium alkoxides at -78 C. This last method provides the highest yields, up to 95% in most of the cases tested, but the sonochemical method proceeds under less basic conditions. Both methods preserve the integrity of the asymmetric center. [Pg.128]

As a direct route for the constructing carbon-carbon bonds, catalytic asymmetric Michael additions with various carbon-based nucleophiles including malonic esters, cyanide, electron-deficient nitrile derivatives, a-nitroesters, nitroalkanes, Horner-Wadsworth-Emmons reagent, indoles, and silyl enol ethers have attracted considerable attention. [Pg.177]

The covalently linked dinuclear (salen)Al complex 24 and the macrocyclic cyclooctene-supported salen-AlCl catalyst 25 were applied in the asymmetric Michael addition of cyanide to a,p-unsaturated imides (Scheme 19.20). The Jacobsen group found that the covalently linked catalyst 24 had several orders of magnitude greater reactivity than the mononuclear analogue [S,S)-Al(salen) ent-3, and the enantioselectivities were comparable.In the... [Pg.181]

Very recently, Khan and coworkers reported an (i ,i )-(salen)Al 3 catalysed asymmetric Michael addition of trimethylsilyl cyanide to p-nitro-olefins using 4-phenylpyridine AT-oxide as an additive (Scheme 19.21). 4-Phe-nylpyridine JV-oxide aets both as an axial ligand and helps to activate the cyanide source trimethylsilyl cyanide, which thereby increases the reactivity. [Pg.182]

Lanthanide Bimetallic and Polymetallic Asymmetric Catalysts 687 Table 13.32 Catalytic asymmetric conjugate addition of cyanide to a,p-unsaturated imides (S,S)-[(salen)AI]20 (2 mol%)... [Pg.159]

Scheme 13.34 Catalytic asymmetric conjugate addition of cyanide to p-aryl, alkyl, and alkenyl ap-unsaturated /V-acyl pyrroles. Scheme 13.34 Catalytic asymmetric conjugate addition of cyanide to p-aryl, alkyl, and alkenyl ap-unsaturated /V-acyl pyrroles.

See other pages where Asymmetric cyanide addition is mentioned: [Pg.202]    [Pg.205]    [Pg.206]    [Pg.171]    [Pg.175]    [Pg.5320]    [Pg.202]    [Pg.205]    [Pg.206]    [Pg.5319]    [Pg.202]    [Pg.205]    [Pg.206]    [Pg.171]    [Pg.175]    [Pg.5320]    [Pg.202]    [Pg.205]    [Pg.206]    [Pg.5319]    [Pg.316]    [Pg.316]    [Pg.452]    [Pg.494]    [Pg.8]    [Pg.53]    [Pg.110]    [Pg.13]    [Pg.158]    [Pg.158]    [Pg.24]   
See also in sourсe #XX -- [ Pg.202 , Pg.204 ]

See also in sourсe #XX -- [ Pg.202 , Pg.204 ]




SEARCH



Asymmetric Addition of Cyanide and Isocyanide to Aldehydes or Imines

Asymmetric Conjugate Additions of Cyanide

Asymmetric addition

Cyanides, addition

© 2024 chempedia.info