Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective alkenylation

Improved methods for the preparation of reagents such as isopinocampheyl(l-isopinocam-pheyl-2-alkenyl)borinic acids will certainly lead to a more enantioselective synthesis of anti-homoallylic alcohols, since the enantiomeric purity of the reagent is the only significant limitation to the synthetic utility of this reagent system. [Pg.326]

Table 9. Enantioselective Alkenylations with Chiral 3-Substituted Allyltitanium Complexes... Table 9. Enantioselective Alkenylations with Chiral 3-Substituted Allyltitanium Complexes...
In the presence of metal catalysts such as rhodium compounds, aldehydes can add directly to alkenes to form ketones. The reaction of co-alkenyl aldehydes with rhodium catalyst leads to cyclic ketones, with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates. ° ... [Pg.1038]

Enantioselective Addition Reactions of Allylic Stannanes. There have been several studies of the enantiomers of a-oxygenated alkenyl stannanes. The chirality of the a-carbon exerts powerful control on enantioselectivity with the preference for the stannyl group to be anti to the forming bond. This is presumably related to the stereoelectronic effect that facilitates the transfer of electron density from the tin to the forming double bond.182... [Pg.843]

A combination of an enzymatic kinetic resolution and an intramolecular Diels-Alder has recently been described by Kita and coworkers [23]. In the first step of this domino process, the racemic alcohols ( )-8-55 are esterified in the presence of a Candida antarctica lipase (CALB) by using the functionalized alkenyl ester 8-56 to give (R)-8-57, which in the subsequent Diels-Alder reaction led to 8-58 in high enantioselectivity of 95 and 91 % ee, respectively and 81 % yield (Scheme 8.15). In-... [Pg.538]

Intramolecular cyclopropanation is a useful method for construction of [n.l.0]-bicyclic compounds.17-21 225 275 As a matter of course, alkenyl and diazo groups of the substrate are connected by a linker and the transition-state conformation of intramolecular cyclization is influenced by the length and the shape of the linker. Thus, the enantioselectivity of the reaction often depends upon the substrates used. Use of a catalyst suitably designed for each reaction is essential for achieving high enantioselectivity. [Pg.251]

The Cu semicorrin complex (68a) has been successfully used as the catalyst for cyclization of alkenyl diazoketones, though the reactions of some substrates showed modest enantioselectivity (Scheme 74).276 Shibasaki et al. have successfully used the cyclization of diazoketone with Cu bis(oxazoline) (101) for the construction of the CD ring skeleton of phorbol.277... [Pg.251]

The first example of asymmetric rhodium-catalyzed 1,4-addition of organoboron reagents to enones was described in 1998 by Hayashi and Miyaura. Significant progress has been made in the past few years. This asymmetric addition reaction can be carried out in aqueous solvent for a broad range of substrates, such as a,/ -unsaturated ketones, esters, amides, phosphonates, nitroalkenes. The enantioselectivity is always very high (in most cases over 90% ee). This asymmetric transformation provides the best method for the enantioselective introduction of aryl and alkenyl groups to the / -position of these electron-deficient olefins. [Pg.384]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

The Lewis acid catalyst 53 is now referred to as the Narasaka catalyst. This catalyst can be generated in situ from the reaction of dichlorodiisopropoxy-titanium and a diol chiral ligand derived from tartaric acid. This compound can also catalyze [2+2] cycloaddition reactions with high enantioselectivity. For example, as depicted in Scheme 5-20, in the reaction of alkenes bearing al-kylthio groups (ketene dithioacetals, alkenyl sulfides, and alkynyl sulfides) with electron-deficient olefins, the corresponding cyclobutane or methylenecyclobu-tene derivatives can be obtained in high enantiomeric excess.18... [Pg.281]

Intramolecular cyclopropanation has a noteworthy advantage. Unlike intermolecular asymmetric cyclopropanation, the intramolecular reaction produces only one diastereomer due to geometric constrains on the fused bicyclic products. Doyle has extensively studied the intramolecular enantioselective reactions of a variety of alkenyl diazoacetates catalyzed by chiral rhodium carboxamides 198 and 200 and has achieved excellent results. [Pg.317]

Shibasaki et al. developed a polymer-supported bifunctional catalyst (33) in which aluminum was complexed to a chiral binaphtyl derivative containing also two Lewis basic phosphine oxide-functionahties. The binaphtyl unit was attached via a non-coordinating alkenyl Hnker to the Janda Jel-polymer, a polystyrene resin containing flexible tetrahydrofuran-derived cross-Hnkers and showing better swelling properties than Merifield resins (Scheme 4.19) [105]. Catalyst (33) was employed in the enantioselective Strecker-type synthesis of imines with TMSCN. [Pg.221]

This chemistry was extended to a catalytic enantioselective alkenylation and phenylation of aldehydes and a-ketoesters. Using CuF-DTBM-SEGPHOS complex, products were obtained with excellent enantioselectivity from a wide range of aldehydes including aromatic and aliphatic aldehdyes, [Eq. (13.26)]. Previously catalytic enantioselective vinylation and phenylation are restricted using the corresponding zinc reagents. The active nucleophile is proposed to be an alkenyl or phenyl copper, based on NMR studies. The chiral CuF catalyst can also be applied to a catalytic enantioselective aldol reaction to ketones... [Pg.397]

The alkenyl oxonium ion dienophiles generated from dioxolanes have been made enantioselective by use of chiral diols. For example, dioxolanes derived from. vy -l,2-diphenylethane-l,2-diol react with dienes such as cyclopentadiene and isoprene, but the stereoselectivity is very modest in most cases. [Pg.350]


See other pages where Enantioselective alkenylation is mentioned: [Pg.156]    [Pg.1043]    [Pg.291]    [Pg.300]    [Pg.106]    [Pg.174]    [Pg.234]    [Pg.235]    [Pg.362]    [Pg.60]    [Pg.252]    [Pg.253]    [Pg.309]    [Pg.159]    [Pg.462]    [Pg.696]    [Pg.133]    [Pg.183]    [Pg.192]    [Pg.245]    [Pg.255]    [Pg.16]    [Pg.70]    [Pg.74]    [Pg.88]    [Pg.90]    [Pg.270]    [Pg.415]    [Pg.255]    [Pg.1142]    [Pg.56]    [Pg.74]    [Pg.72]    [Pg.192]   
See also in sourсe #XX -- [ Pg.563 ]




SEARCH



© 2024 chempedia.info