Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic asymmetric aldol

In 2000, Morken et al. reported the first examples of catalytic asymmetric reductive aldol reactions [21]. Using Rh(BINAP) (5mol%) as catalyst and Et2MeSiH as reductant, the syn-selective (1.7 1) coupling of benzalde-hyde and methyl acrylate produced the diastereomers 35-syn and 35-anti in 91% ee and 88% ee, respectively. Using phenyl acrylate as the nucleophilic partner, a favorable yield of 72% was obtained for the aldol product 36 (Scheme 12). Several aldehydes were examined, which exhibit higher levels of syn-selectivity. Expanding the scope of substrates and acrylates under... [Pg.121]

The heterobimetallic asymmetric catalyst, Sm-Li-(/ )-BINOL, catalyzes the nitro-aldol reaction of ot,ot-difluoroaldehydes with nitromethane in a good enantioselective manner, as shown in Eq. 3.78. In general, catalytic asymmetric syntheses of fluorine containing compounds have been rather difficult. The S configuration of the nitro-aldol adduct of Eq. 3.78 shows that the nitronate reacts preferentially on the Si face of aldehydes in the presence of (R)-LLB. In general, (R)-LLB causes attack on the Re face. Thus, enantiotopic face selection for a,a-difluoroaldehydes is opposite to that for nonfluorinated aldehydes. The stereoselectivity for a,a-difluoroaldehydes is identical to that of (3-alkoxyaldehydes, as shown in Scheme 3.19, suggesting that the fluorine atoms at the a-position have a great influence on enantioface selection. [Pg.61]

Heterobimetallic asymmetric complexes contain both Bronsted basic and Lewis acidic functionalities. These complexes have been developed by Shibasaki and coworkers and have proved to be highly efficient catalysts for many types of asymmetric reactions, including catalytic asymmetric nitro-aldol reaction (see Section 3.3) and Michael reaction. They have reported that the multifunctional catalyst (f )-LPB [LaK3tris(f )-binaphthoxide] controls the Michael addition of nitromethane to chalcones with >95% ee (Eq. 4.140).205... [Pg.119]

Machajewski, T.D. and Wong, C.-H. (2000) The catalytic asymmetric aldol reaction. Angewandte Chemie-International Edition, 39, 1352-1374. [Pg.133]

Recently, novel bifunctionalized zinc catalysts have been developed (compounds (N) and (P), Scheme 55). They have both Lewis-acid and Lewis-base centers in their complexes, and show remarkable catalytic activity in direct aldol reactions.233-236 A Zn11 chiral diamine complex effectively catalyzes Mannich-type reactions of acylhydrazones in aqueous media to afford the corresponding adducts in high yields and selectivities (Scheme 56).237 This is the first example of catalytic asymmetric Mannich-type reactions in aqueous media, and it is remarkable that this chiral Zn11 complex is stable in aqueous media. [Pg.423]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

Catalytic asymmetric aldol reactions of a-heterosubstituted substrates such as glyoxaldehyde, and methyl pyruvate have been reported (Scheme 81). High diastereo- and enantioselectivity have been obtained by using combined use of Sn(OTf)2 and bis(oxazoline) or pyridinebis(oxazoline) ligands.341... [Pg.434]

A lead(II) triflate-crown ether complex functions as a chiral Lewis-acid catalyst for asymmetric aldol reactions in aqueous media (Scheme 86).352 This is the first example of a chiral crown-based Lewis acid that can be successfully used in catalytic asymmetric reactions. [Pg.436]

Pro-chiral pyridine A-oxides have also been used as substrates in asymmetric processes. Jprgensen and co-workers explored the catalytic asymmetric Mukaiyama aldol reaction between ketene silyl acetals 61 and pyridine A-oxide carboxaldehydes 62 <06CEJ3472>. The process is catalyzed by a copper(II)-bis(oxazoline) complex 63 which gave good yields and diastereoselectivities with up to 99% enantiomeric excess. [Pg.324]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

Ligands for catalytic Mukaiyama aldol addition have primarily included bidentate chelates derived from optically active diols,26 diamines,27 amino acid derivatives,28 and tartrates.29 Enantioselective reactions induced by chiral Ti(IY) complex have proved to be one of the most powerful stereoselective transformations for synthetic chemists. The catalytic asymmetric aldol reaction introduced by Mukaiyama is discussed in Section 3.4.1. [Pg.146]

Catalytic Asymmetric Aldol Reaction Promoted by Bimetallic Catalysts Shibasaki s System... [Pg.163]

Scheme 6.26. Representative catalytic asymmetric aldol additions not promoted by Zr-based complexes. Scheme 6.26. Representative catalytic asymmetric aldol additions not promoted by Zr-based complexes.
Related catalytic enantioselective processes [84] As the examples in Scheme 6.26 show, a wide variety of catalytic asymmetric aldol additions have been reported that can be considered as attractive alternatives to the Zr-catalyzed process summarized above. The Ti-cata-lyzed version due to Carreira (84) [85], the Cu-catalyzed variant of Evans (85) [86], and the protocol reported by Shibasaki (86) [87] have all been used in syntheses of complex molecules. More recently, Trost (87) [88] and Shibasaki (88) [89] have developed two additional attractive asymmetric catalytic aldol protocols. Other related technologies (not represented in Scheme 6.26) have been described by Morken [90] and Jorgensen [91]. [Pg.209]

The studies summarized above clearly bear testimony to the significance of Zr-based chiral catalysts in the important field of catalytic asymmetric synthesis. Chiral zircono-cenes promote unique reactions such as enantioselective alkene alkylations, processes that are not effectively catalyzed by any other chiral catalyst class. More recently, since about 1996, an impressive body of work has appeared that involves non-metallocene Zr catalysts. These chiral complexes are readily prepared (often in situ), easily modified, and effect a wide range of enantioselective C—C bond-forming reactions in an efficient manner (e. g. imine alkylations, Mannich reactions, aldol additions). [Pg.223]

Lewis acids as water-stable catalysts have been developed. Metal salts, such as rare earth metal triflates, can be used in aldol reactions of aldehydes with silyl enolates in aqueous media. These salts can be recovered after the reactions and reused. Furthermore, surfactant-aided Lewis acid catalysis, which can be used for aldol reactions in water without using any organic solvents, has been also developed. These reaction systems have been applied successfully to catalytic asymmetric aldol reactions in aqueous media. In addition, the surfactant-aided Lewis acid catalysis for Mannich-type reactions in water has been disclosed. These investigations are expected to contribute to the decrease of the use of harmful organic solvents in chemical processes, leading to environmentally friendly green chemistry. [Pg.4]

Catalytic Asymmetric Aldol Reactions in Aqueous Media 7... [Pg.8]

Catalytic asymmetric aldol reactions provide one of the most powerful carbon-carbon bond-forming processes affording synthetically useful, optically... [Pg.8]

Tiible 3. Catalytic asymmetric aldol reactions in aqueous media... [Pg.9]

The catalytic asymmetric aldol reaction has been applied to the LASC system, which uses copper bis(-dodecyl sulfate) (4b) instead of CufOTf. 1261 An example is shown in Eq. 6. In this case, a Bronsted add, such as lauric add, is necessary to obtain a good yield and enantioseledivity. This example is the first one involving Lewis acid-catalyzed asymmetric aldol reactions in water without using organic solvents. Although the yield and the selectivity are still not yet optimized, it should be noted that this appredable enantioselectivity has been attained at ambient temperature in water. [Pg.10]

S. Kobayashi, Y. Fujishita, T. Mukaiyama, The Effident Catalytic Asymmetric Aldol-Type Readion Chem. Lett. 1990,1455-1458. [Pg.12]

Abstract In the first part of this mini review a variety of efficient asymmetric catalysis using heterobime-tallic complexes is discussed. Since these complexes function at the same time as both a Lewis acid and a Bronsted base, similar to enzymes, they make possible many catalytic asymmetric reactions such as nitroal-dol, aldol, Michael, Michael-aldol, hydrophosphonyla-tion, hydrophosphination, protonation, epoxide opening, Diels-Alder and epoxi-dation reaction of a, 3-unsaturated ketones. In the second part catalytic asymmetric reactions such as cya-nosilylations of aldehydes... [Pg.105]

Table 3. Direct catalytic asymmetric aldol reactions promoted by (R)-LLB (20 mol%). Table 3. Direct catalytic asymmetric aldol reactions promoted by (R)-LLB (20 mol%).
LLB, KHMDS (0.9 equiv to LLB) and H20 (1 equiv to LLB), which presumably forms a heteropolymetallic complex (LLB-ID, was found to be a superior catalyst for the direct catalytic asymmetric aldol reaction giving 49 in 89 % yield and 79 % ee (using 8 mol% of LLB). We employed this method to generate KOH in situ because of its insolubility in THE The use of KO-t-Bu instead of KHMDS gave a similar result, indicating that HMDS dose not play a key role. Interestingly, further addition of H20 (1 equiv with respect to LLB) resulted in the formation of 49 in 83 % yield and higher ee. The powder obtained from the cata-... [Pg.110]

Scheme 6. Possible mechanism of direct catalytic asymmetric aldol reaction. Scheme 6. Possible mechanism of direct catalytic asymmetric aldol reaction.

See other pages where Catalytic asymmetric aldol is mentioned: [Pg.17]    [Pg.367]    [Pg.368]    [Pg.368]    [Pg.132]    [Pg.134]    [Pg.31]    [Pg.416]    [Pg.169]    [Pg.164]    [Pg.513]    [Pg.227]    [Pg.516]    [Pg.1]    [Pg.9]    [Pg.9]    [Pg.106]    [Pg.109]    [Pg.109]    [Pg.109]    [Pg.111]    [Pg.111]   
See also in sourсe #XX -- [ Pg.144 , Pg.145 , Pg.146 , Pg.147 , Pg.148 , Pg.149 , Pg.150 , Pg.151 , Pg.152 , Pg.153 ]

See also in sourсe #XX -- [ Pg.545 ]




SEARCH



Aldehydes direct catalytic asymmetric aldol

Aldol additions, catalytic asymmetric

Aldol catalytic

Aldol reaction, direct catalytic asymmetric

Aldolases direct catalytic asymmetric aldol

Asymmetric catalytic

Asymmetric catalytic aldol reactions

Catalysts aldol additions, catalytic asymmetric

Catalytic Asymmetric Mukaiyama-Aldol Reactions

Catalytic asymmetric enamine aldol

Shibasaki direct catalytic asymmetric aldol reaction

Zinc catalysts direct catalytic asymmetric aldol

© 2024 chempedia.info