Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction, asymmetric reductive

Jacobsen epoxidation 359 -, Katsuki epoxidation 361 -, Mukaiyama-aldol reaction 367 f. -, oxime ether reduction 363 -, Sharpless asymmetric dihydroxyla-tion 361... [Pg.790]

In 2000, Morken et al. reported the first examples of catalytic asymmetric reductive aldol reactions [21]. Using Rh(BINAP) (5mol%) as catalyst and Et2MeSiH as reductant, the syn-selective (1.7 1) coupling of benzalde-hyde and methyl acrylate produced the diastereomers 35-syn and 35-anti in 91% ee and 88% ee, respectively. Using phenyl acrylate as the nucleophilic partner, a favorable yield of 72% was obtained for the aldol product 36 (Scheme 12). Several aldehydes were examined, which exhibit higher levels of syn-selectivity. Expanding the scope of substrates and acrylates under... [Pg.121]

A yyw-selective asymmetric nitro-aldol reaction has been reported for structurally simple aldehydes using a new catalyst generated from 6,6-bis[(triethylsilyl)ethynyl]BINOL (g in Scheme 3.18).126 The syn selectivity in the nitro-aldol reaction can be explained by steric hindrance in the bicyclic transition state as can be seen in Newman projection. In the favored transition state, the catalyst acts as a Lewis acid and as a Lewis base at different sites. In contrast, the nonchelation-controlled transition state affords anti product with lower ee. This stereoselective nitro-aldol reaction has been applied to simple synthesis of t/ircodihydrosphingosine by the reduction of the nitro-aldol product with H2 and Pd-C (Eq. 3.79). [Pg.61]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

The intermediate enolate or enol ether from the initial reduction of an enone may be alkylated in situ (Eq. 281).455 / -Substituted cyclopentenones may be asymmetrically reduced and alkylated459 (see section on asymmetric reductions of enones). Enolates may also be trapped with an aldehyde in a reductive aldol condensation of an enone with an aldehyde,455 permitting a regioselective aldol condensation to be carried out as shown in Eq. 282.455 This class of reductive aldol condensation reactions can also occur in a cyclic manner (Eq. 283).460... [Pg.92]

The prime functional group for constructing C-C bonds may be the carbonyl group, functioning as either an electrophile (Eq. 1) or via its enolate derivative as a nucleophile (Eqs. 2 and 3). The objective of this chapter is to survey the issue of asymmetric inductions involving the reaction between enolates derived from carbonyl compounds and alkyl halide electrophiles. The addition of a nucleophile toward a carbonyl group, especially in the catalytic manner, is presented as well. Asymmetric aldol reactions and the related allylation reactions (Eq. 3) are the topics of Chapter 3. Reduction of carbonyl groups is discussed in Chapter 4. [Pg.71]

The utilization of a-amino acids and their derived 6-araino alcohols in asymmetric synthesis has been extensive. A number of procedures have been reported for the reduction of a variety of amino acid derivatives however, the direct reduction of a-am1no acids with borane has proven to be exceptionally convenient for laboratory-scale reactions. These reductions characteristically proceed in high yield with no perceptible racemization. The resulting p-amino alcohols can, in turn, be transformed into oxazolidinones, which have proven to be versatile chiral auxiliaries. Besides the highly diastereoselective aldol addition reactions, enolates of N-acyl oxazolidinones have been used in conjunction with asymmetric alkylations, halogenations, hydroxylations, acylations, and azide transfer processes, all of which proceed with excellent levels of stereoselectivity. [Pg.169]

The third part of this chapter reviews previously described catalytic asymmetric reactions that can be promoted by chiral lanthanoid complexes. Transformations such as Diels-Alder reactions, Mukaiyama aldol reactions, several types of reductions, Michael addition reactions, hydrosilylations, and hydroaminations proceed under asymmetric catalysis in the presence of chiral lanthanoid complexes. [Pg.202]

In the total synthesis of (+)-trienomycins A and F, Smith et al. used an Evans aldol reaction technology to construct a 1,3-diol functional group8 (Scheme 2.1i). Asymmetric aldol reaction of the boron enolate of 14 with methacrolein afforded exclusively the desired xyn-diastereomer (17) in high yield. Silylation, hydrolysis using the lithium hydroperoxide protocol, preparation of Weinreb amide mediated by carbonyldiimidazole (CDI), and DIBAL-H reduction cleanly gave the aldehyde 18. Allylboration via the Brown protocol9 (see Chapter 3) then yielded a 12.5 1 mixture of diastereomers, which was purified to provide the alcohol desired (19) in 88% yield. Desilylation and acetonide formation furnished the diene 20, which contained a C9-C14 subunit of the TBS ether of (+)-trienomycinol. [Pg.62]


See other pages where Aldol reaction, asymmetric reductive is mentioned: [Pg.185]    [Pg.220]    [Pg.247]    [Pg.620]    [Pg.123]    [Pg.133]    [Pg.104]    [Pg.110]    [Pg.109]    [Pg.331]    [Pg.410]    [Pg.411]    [Pg.436]    [Pg.444]    [Pg.489]    [Pg.938]    [Pg.55]    [Pg.72]    [Pg.255]    [Pg.432]    [Pg.791]    [Pg.105]    [Pg.40]    [Pg.162]    [Pg.482]    [Pg.193]    [Pg.1267]    [Pg.140]    [Pg.352]    [Pg.39]    [Pg.23]    [Pg.870]    [Pg.152]    [Pg.66]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Aldol reactions, reductive

Asymmetric aldol reactions

Asymmetric aldol reactions chemical reductions

Asymmetric reduction

Asymmetric reduction reactions

Asymmetrical reduction

Reduction aldol reactions

Reductive aldol

Reductive aldolization

© 2024 chempedia.info