Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arylation homolytic

The closely related N- arylazoaziridine system (278) decomposes in refluxing benzene to give aryl azides and alkenes, again stereospecifically (70T3245). However, biaryls, arenes and other products typical of homolytic processes are also formed in a competing reaction, although this pathway can be suppressed by the use of a polar solvent and electron withdrawing aryl substituents. [Pg.75]

Homolytic cleavage of dlazonlum salts to produce aryl radicals is induced by titan1um(III) salt, which is also effective in reducing the a-carbonylalkyl radical adduct to olefins, telotnerization of methyl vinyl ketone, and dimerization of the adduct radicals. The reaction can be used with other electron-deficient olefins, but telomerization or dimerization are important side reactions. [Pg.70]

A free-radical reaction is a chemical process which involves molecules having unpaired electrons. The radical species could be a starting compound or a product, but the most common cases are reactions that involve radicals as intermediates. Most of the reactions discussed to this point have been heterolytic processes involving polar intermediates and/or transition states in which all electrons remained paired throughout the course of the reaction. In radical reactions, homolytic bond cleavages occur. The generalized reactions shown below illustrate the formation of alkyl, vinyl, and aryl free radicals by hypothetical homolytic processes. [Pg.663]

Homolytic Arylation of Aromatic and Polyfluoroaromatic Compounds Bolton, R Williams, G H Chem Soc Rev 15, 261-289 122... [Pg.18]

The low bond-strength of the O—0 bond renders peroxides susceptible to homolytic fission to give oxy radicals on heating. Diacyl peroxides give rise to acyloxy radicals which then decompose to aryl radicals and carbon dioxide, Eq. (5). For example, dibenzoyl... [Pg.134]

As a result of most of the early work on the homolytic arylation of monosubstituted benzenoid compounds it was concluded that the attacking radical was directed to the ortho and para positions in the benzene ring regardless of the nature of the substituent. Similarly,... [Pg.138]

In contrast to the acid, sodium nitrite should not in general be added in excess. Firstly, as far as the ratio of amine to nitrite is concerned, diazotization is practically a quantitative reaction. In consequence, it provides the most important method for determining aromatic amines by titration. Secondly, an excess of nitrous acid exerts a very unfavorable influence on the stability of diazo solutions, as was shown by Gies and Pfeil (1952). Mechanistically the reactions between aromatic diazonium and nitrite ions were investigated more recently by Opgenorth and Rtichardt (1974). They showed that the primary and major reaction is the formation of aryl radicals from the intermediate arenediazonitrite (Ar —N2 —NO2). Details will be discussed in the context of homolytic dediazoniations (Secs. 8.6 and 10.6). [Pg.13]

Dediazoniation refers to all those reactions of diazo and diazonium compounds in which an N2 molecule is one of the products. The designation of the entering group precedes the term dediazoniation, e. g., azido-de-diazoniation for the substitution of the diazonio group by an azido group, or aryl-de-diazoniation for a Gomberg-Bachmann reaction. The IUPAC system says nothing about the mechanism of a reaction (see Sec. 1.2). For example, the first of the two dediazoniations mentioned is a heterolytic substitution, whereas the second is a homolytic substitution. [Pg.161]

Simple mechanistic considerations easily explain why heterolytic dissociation of the C — N bond in a diazonium ion is likely to occur, as a nitrogen molecule is already preformed in a diazonium ion. On the other hand, homolytic dissociation of the C —N bond is very unlikely from an energetic point of view. In heterolysis N2, a very stable product, is formed in addition to the aryl cation (8.1), which is a metastable intermediate, whereas in homolysis two metastable primary products, the aryl radical (8.2) and the dinitrogen radical cation (8.3) would be formed. This event is unlikely indeed, and as discussed in Section 8.6, homolytic dediazoniation does not proceed by simple homolysis of a diazonium ion. [Pg.164]

In conclusion, it is very likely that the influence of solvents on the change from the heterolytic mechanism of dissociation of the C —N bond in aromatic diazonium ions to homolytic dissociation can be accounted for by a mechanism in which a solvent molecule acts as a nucleophile or an electron donor to the P-nitrogen atom. This process is followed by a one- or a two-step homolytic dissociation to an aryl radical, a solvent radical, and a nitrogen molecule. In this way the unfavorable formation of a dinitrogen radical cation 8.3 as mentioned in Section 8.2, is eliminated. [Pg.200]

A similar case is the catalysis of Gomberg-Bachmann arylations by A,A-diphenyl-hydroxylamine, which was discovered by Cooper and Perkins (1969). As Scheme 8-46 shows, the covalent adduct cation 8.62 first loses a proton. This facilitates the homolytic dissociation, as a stable radical, A/,A-diphenylnitroxide (8.63), is formed. This... [Pg.206]

Coming back to the chain reaction sequence (Scheme 8-50) the inclusion of the final step shown here demonstrates clearly that the initial formation of the aryl radical from the diazo ether (Scheme 8-49) may be only an initiation step. The arguments of Broxton concerning whether the homolytic dediazoniation starts with the diazo ether or with the diazonium ion therefore become irrelevant. [Pg.211]

Mechanistically there is ample evidence that the Balz-Schiemann reaction is heterolytic. This is shown by arylation trapping experiments. The added arene substrates are found to be arylated in isomer ratios which are typical for an electrophilic aromatic substitution by the aryl cation and not for a homolytic substitution by the aryl radical (Makarova et al., 1958). Swain and Rogers (1975) showed that the reaction takes place in the ion pair with the tetrafluoroborate, and not, as one might imagine, with a fluoride ion originating from the dissociation of the tetrafluoroborate into boron trifluoride and fluoride ions. This is demonstrated by the insensitivity of the ratio of products ArF/ArCl in methylene chloride solution at 25 °C to excess BF3 concentration. [Pg.228]

A number of approaches have been tried for modified halo-de-diazoniations using l-aryl-3,3-dialkyltriazenes, which form diazonium ions in an acid-catalyzed hydrolysis (see Sec. 13.4). Treatment of such triazenes with trimethylsilyl halides in acetonitrile at 60 °C resulted in the rapid evolution of nitrogen and in the formation of aryl halides (Ku and Barrio, 1981) without an electron transfer reagent or another catalyst. Yields with silyl bromide and with silyl iodide were 60-95%. The authors explain the reaction as shown in (Scheme 10-30). The formation of the intermediate is indicated by higher yields if electron-withdrawing substituents (X = CN, COCH3) are present. In the opinion of the present author, it is likely that the dissociation of this intermediate is not a concerted reaction, but that the dissociation of the A-aryl bond to form an aryl cation is followed by the addition of the halide. The reaction is therefore mechanistically not related to the homolytic halo-de-diazoniations. [Pg.238]

However, these mechanistic investigations show only that the reagent in the arylation proper is an aryl radical. They say nothing about the formation of this aryl radical and the homolytic substitution of an aromatic hydrogen. Experimental research on this problem started with work of Huisgen (1951). We discussed part of... [Pg.255]

The experiments with 2-(3-butenyloxy)benzenediazonium ions (10.55, Z = 0, n = 2, R=H) and benzenethiolate showed a significant shift of the product ratio in favor of the uncyclized product 10.57. They also indicated that the covalent adduct Ar — N2 — SC6H5 is formed as an intermediate, which then undergoes homolytic dissociation to produce the aryl radical (Scheme 10-83). Following the bimolecular addition of the aryl radical to a thiolate ion (Scheme 10-84), the chain propagation reaction (Scheme 10-85) yielding the arylphenylsulfide is in competition with an alternative route leading to the uncyclized product 10.57. [Pg.271]

Quinoxaline also underwent many other homolytic alkylations or arylations usually to give, for example, mixtures of 2-alkyl-, 6-alkyl-, and sometimes 2,3- or 2,6-dialkyl derivatives, according to the agent and conditions used. Percentage conversions, ratios of products, separability, and yields appear to... [Pg.98]

The C-Se and C-Te bonds are formed by an internal homolytic substitution of vinyl or aryl radicals at selenium or tellurium with the preparation of selenophenes and tellurophenes, respectively. An example is shown below, where (TMSIsSiH was used in the cyclization of vinyl iodide 65 that affords... [Pg.145]

The phosphazene backbone has a particularly high resistance to thermal treatment and to homolytic scission of the -P=N- bonds, possibly due to the combination of the high strength of the phosphazene bond and its remarkable ionic character [456]. As a consequence, the onset of thermal decomposition phenomena (as detected, for instance, by TGA) are observed at considerably high temperatures for poly[bis(trifluoroethoxy)phosphazene], [NP(OCH2CF3)2]n [391, 399, 457], for phosphazene copolymers substituted with fluorinated alcohols of different length [391, 399, 457], for polyspirophosphazenes substituted with 2,2 -dihydroxybiphenyl groups [458], and for poly(alkyl/aryl)-phosphazenes [332]. [Pg.184]

The aryl-thallium bond is thus apparently capable of displacement either by electrophilic or by suitable nucleophilic reagents. Coupled with its propensity for homolytic cleavage (spontaneous in the case of ArTlIj compounds, and otherwise photochemically induced), ArTlXj compounds should be capable of reacting with a wide variety of reagents under a wide variety of conditions. Since the position of initial aromatic thallation can be controlled to a remarkable degree, the above reactions may be only representative of a remarkably versatile route to aromatic substitution reactions in which organothallium compounds play a unique and indispensable role. [Pg.173]

Cleavage by nucleophiles 79 Acid-catalyzed reactions with nucleophiles 81 Reactions of dialkylalkylthiosulfonium ions 83 Cycloelimination reactions of alkyl thiolsulfinates 88 Homolytic reactions of aryl thiolsulfinates 92 Oxidation of thiolsulfinates by peracids 94 Isomerizations of sulfoxides and thiolsulfinates 95... [Pg.65]


See other pages where Arylation homolytic is mentioned: [Pg.283]    [Pg.275]    [Pg.283]    [Pg.275]    [Pg.152]    [Pg.166]    [Pg.189]    [Pg.201]    [Pg.210]    [Pg.233]    [Pg.239]    [Pg.254]    [Pg.256]    [Pg.260]    [Pg.278]    [Pg.445]    [Pg.1063]    [Pg.120]    [Pg.164]    [Pg.403]    [Pg.91]    [Pg.1063]    [Pg.350]    [Pg.231]    [Pg.316]    [Pg.541]    [Pg.408]    [Pg.92]   
See also in sourсe #XX -- [ Pg.2 , Pg.132 ]




SEARCH



Homolytic

© 2024 chempedia.info