Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aryl ethers substitution

Chloromethylation of arenes. This acid cliloride can be used instead of the suspected carcinogen chloromethyl methyl ether (9 102) for chloromethylation of some arenes. The reaction is conducted in CH,NOi or t S, under standard Friedel-Crafts conditions (AlCl, catalysis). This chloromethylation is particularly useful for aryl ethers substituted in the o- or p-position by an electron-v, ithdrawing group (yields —50-90%). [Pg.310]

The reaction between an alkoxide ion and an aryl halide can be used to prepare alkyl aryl ethers only when the aryl halide is one that reacts rapidly by the addition-elim mation mechanism of nucleophilic aromatic substitution (Section 23 6)... [Pg.1008]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

Methyl chloride can be converted iato methyl iodide or bromide by refluxing ia acetone solution ia the presence of sodium iodide or bromide. The reactivity of methyl chloride and other aUphatic chlorides ia substitution reactions can often be iacteased by usiag a small amount of sodium or potassium iodide as ia the formation of methyl aryl ethers. Methyl chloride and potassium phthalimide do not readily react to give /V-methy1phtha1imide unless potassium iodide is added. The reaction to form methylceUulose and the Williamson synthesis to give methyl ethers are cataly2ed by small quantities of sodium or potassium iodide. [Pg.513]

Although the sulfone activated biphenyl and the ketone activated naphthalene moiety for the displacement polymerization have been reported by Attwood et al. [11], these were rediscovered by Cummings et al. [12] and Hergenrother et al. [13], respectively, for the synthesis of poly(aryl ethers). Recently, Singh and Hay [14] reported polymers containing 0-dibenzoyl benzene (1,2,3) moiety by reaction between bis(O-fluorobenzoyl) benzene or substituted benzene with bisphenates of alkali metal salt in DMAC as follows ... [Pg.36]

The mem-dichlorobenzene complex reacts with protected 0-aryltyrosines to give aryl ethers. Both chlorine atoms can be sequentially substituted to give symmetrical or disymmetrical triaryl diethers (Scheme XVI). The building up of such diaryl ethers from phenolic compounds which have amino groups in their side chains... [Pg.78]

Ordinary ketones are generally much more difficult to cleave than trihalo ketones or p-diketones, because the carbanion intermediates in these cases are more stable than simple carbanions. However, nonenolizable ketones can be cleaved by treatment with a 10 3 mixture of t-BuOK—H2O in an aprotic solvent such as ether, dimethyl sulfoxide, 1,2-dimethoxyethane (glyme), and so on, or with sohd t-BuOK in the absence of a solvent. When the reaction is applied to monosubstituted diaryl ketones, that aryl group preferentially cleaves that comes off as the more stable carbanion, except that aryl groups substituted in the ortho position are more readily cleaved than otherwise because of the steric effect (relief of stain). In certain cases, cyclic ketones can be cleaved by base treatment, even if they are enolizable. " OS VI, 625. See also OS VH, 297. [Pg.814]

Lamaty and coworkers described a straightforward combination of three Pd-cata-lyzed transformations first, an intermolecular nucleophilic substitution of an al-lylic bromide to form an aryl ether second, an intramolecular Heck-type transformation in which as the third reaction the intermediate palladium species is intercepted by a phenylboronic acid [124]. Thus, the reaction of a mixture of 2-iodophenol (6/1-253), methyl 2-bromomethylacrylate 6/1-254 and phenylboronic acid in the presence of catalytic amounts of Pd(OAc)2 led to 3,3-disubstituted 2,3-di-hydrobenzofuran 6/1-255 (Scheme 6/1.66). In addition to phenylboronic acid, several substituted boronic acids have also been used in this process. [Pg.401]

In addition to /3-H elimination, olefin insertion, and protonolysis, the cr-metal intermediate has also proved to be capable of undergoing a reductive elimination to bring about an alkylative alkoxylation. Under Pd catalysis, the reaction of 4-alkenols with aryl halides affords aryl-substituted THF rings instead of the aryl ethers that would be produced by a simple cross-coupling mechanism (Equation (126)).452 It has been suggested that G-O bond formation occurs in this case by yy/z-insertion of a coordinated alcohol rather than anti-attack onto a 7r-alkene complex.453... [Pg.684]

The highest enantioselectivity in the dialkyl-substituted olefines has been obtained with the aryl ethers of DHQD 94a and DHQ 94b. With potassium ferri-cyanide as secondary oxidant, it is possible to carry out the reaction at room temperature, and slow addition of the olefins is not required. Under these conditions, the diols can be obtained in 85-90% yield and excellent enantioselectivity. [Pg.223]

In comparison to the N- and S-counterparts, alkoxides possess lower nucleophilicity. Therefore, the reductive elimination process to form the C—O bond is much slower than those to form C— N and C—S bonds [103]. Palucki, Wolfe and Buchwald developed the first intramolecular Pd-catalyzed synthesis of cyclic aryl ethers from o-haloaryl-substituted alcohols [104]. For example, 3-(2-bromophenyl)-2-methyl-2-butanol (91) was converted to 2,2-dimethylchroman (92) under the agency of catalytic Pd(OAc)2 in the presence (S)-(-)-2,2 -bis(di-p-tolylphosphino)-l,r-binaphthyl (Tol-BINAP) as the ligand and K2CO3 as the base. The method worked well for the tertiary alcohols, moderately weE for cychc secondary alcohols, but not for acyclic secondary alcohols. [Pg.22]

Moreover, looking for more effective ligands, Sharpless and his group prepared and tested a number of cinchona alkaloid derivatives, first in the stoichiometric ADH process [33] and then in the catalytic process. They found that aryl ethers of dihydroquinidine, as 4a and 4b, are excellent ligands for ADH of dialkyl substituted olefins (Table 10.3). [Pg.285]

Sharpless concludes that ligand 4c is preferable for the ADH of arylsubstituted olefins, whereas the aryl ethers 4a or 4b are better ligands for the reaction of dialkyl or alkylcarboalkoxy substituted olefins. [Pg.287]

After the initial demonstration of stoichiometric nucleophilic attack on 7i-allyl ligands, catalytic allylic substitution reactions were pursued. In 1970, groups from Union Carbide [3, 4], Shell Oil [5], and Toray Industries [6] published or patented examples of catalytic allylic substitution. All three groups reported allylic amination with palladium catalysts. The Toray Industries report also demonstrated the exchange of aryl ether and ester leaving groups, and the patent from Shell Oil includes catalysts based on rhodium and platinum. [Pg.172]

Three poly(aryl ethers) were prepared and used as coblocks in imide copolymerizations. The first coblock prepared was poly(aryl ether phenylquinoxaline), since this material has the requisite high Tg ( 280 °C) and thermal stability, and the polymer can be processed from solution or the melt. The synthesis of po-ly(aryl ether phenylquinoxalines) involves a fluoro-displacement polymerization of appropriately substituted fluorophenylquinoxalines with bisphenols, us-... [Pg.68]

The reactions in Scheme 70 illustrate the fact that —MOM acetals lie between —OMe and —OCON(Pr-i)2 groups in their directing ability. Orthogonal deprotection conditions (acid for MOM, base for the carbamate) makes MOM and OCON(Pr-i)2 a useful pair of directors for the regioselective synthesis of substituted phenols and aryl ethers. [Pg.535]

A third mechanistically distinct [3 -1- 2] cycloaddition between vinyl ethers and vinyl-carbenoids was discovered and reported in 2001 [26]. This reaction is remarkable because when Rh2(S-DOSP)4 is used as the catalyst, the cis-cyclopentenes 142 are formed in up to 99% enantiomeric excess. The reaction occurs between vinylcarbenoids unsubstituted or alkyl-substituted at the vinyl terminus and vinyl ethers substituted with an aryl or vinyl group. Some illustrative examples are shown in Tab. 14.12. The reaction is considered to be a concerted process, which would be consistent with the highly stereoselective nature of the reaction [26]. Contrary to the [3-1-2] cycloaddition derived by means of vinylogous carbenoid reactivity, this latest [3 -1- 2] cycloaddition is not influenced by solvent effects. Due to steric demands on the carbenoid, the [3-1-2] cycloaddi-tion only occurs with cis-vinyl ethers. [Pg.323]

Finally, by introducing the aryl halide into the isocyanide component, as in 96, various macrocyclic peptidomimetics containing a nonsymmetrical endo biaryl ether bridge have been synthesized [89-91]. Aryl nucleophilic substitution also takes place in this case under standard base-promoted conditions. The synthesis was also carried out on solid phase. Selected examples are shown in Fig. 19, but also a... [Pg.17]

Nucleophilic substitution of halogen atom in aromatic and heteroaromatic halides with a hydroxyamino group proceeds only in substrates that are activated by a strong electron-withdrawing substituent in the benzene ring (e.g. 27, equation 17). Despite this limitation this reaction is useful for synthesis of arylhydroxylamines and usually provides good yields of products. Along with activated aryl halides and sulfonates, activated methyl aryl ethers such as 28 can be used (equation 18). [Pg.124]

The 4- and 6-positions of pyrrolo[2,3-3]pyridines can be substituted via palladium-catalyzed cross-coupling reactions with the 4- or 6-halo-substituted derivatives (Scheme 3) <2001SL609>. Nucleophilic displacement of the 4-substituent of 6-chloro-4-nitro- and 4,6-dichloro-pyrrolo[2,3-/ ]pyridines takes place with phenols. Protection of the pyrrole nitrogen with a /3-trimethylsilylethoxymethyl (SEM) group affords good yields of the aryl ethers (Equation 3) <2006TL2069>. [Pg.280]

Several fluorinated aryl ethers 134 were prepared from the reaction of the 11,12/3-oxirane 133 <1994TL2129> with substituted benzyl alcohols (Equation 13 Table 8) <1995JME4120>. [Pg.868]

The reduction of benzyl aryl ethers has been thoroughly investigated by voltammetric reduction, homogeneous redox catalysis,and currently, by convolution analysis. A family of ethers activated by proper substitution on the phenoxy side were chosen to provide a wide variation in the ET and bond cleavage properties of the molecule. ... [Pg.107]


See other pages where Aryl ethers substitution is mentioned: [Pg.572]    [Pg.934]    [Pg.572]    [Pg.934]    [Pg.535]    [Pg.253]    [Pg.155]    [Pg.39]    [Pg.223]    [Pg.383]    [Pg.541]    [Pg.59]    [Pg.60]    [Pg.51]    [Pg.129]    [Pg.193]    [Pg.68]    [Pg.69]    [Pg.133]    [Pg.659]    [Pg.107]    [Pg.108]    [Pg.298]    [Pg.140]    [Pg.155]    [Pg.535]   
See also in sourсe #XX -- [ Pg.506 ]




SEARCH



Aryl ethers

Aryl ethers nucleophilic aromatic substitution

Aryl substituted

Aryl-substitution

Ethers, substituted

© 2024 chempedia.info