Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction arsenic

Fig. 8. Arsenic extraction from a reddish brown tropical soil deliberately contaminated with arsenate as a function of reaction time by 0.005M chloride, sulphate, carbonate and phosphate. Redrawn from Goh and Lym (2005). Fig. 8. Arsenic extraction from a reddish brown tropical soil deliberately contaminated with arsenate as a function of reaction time by 0.005M chloride, sulphate, carbonate and phosphate. Redrawn from Goh and Lym (2005).
Vela, N. P, Heitkemper, D. T., Stewart, K. R. Arsenic extraction and speciation in carrots using accelerated solvent extraction, liquid chromatography and plasma mass spectrometry. Analyst 2001, 126, 1011-1017. [Pg.265]

Arsenic Extraction Using 0.5 (M) Sodium Bicarbonate Solution Adjusted to pH 8.5 (Johnston and Barnard 1979). [Pg.127]

M Harper. Occupational health aspects of arsenic extractive industry in Britain (1868-1925). Br J Indus Med 45 602-605, 1988. [Pg.22]

G.B. Harris and E. Krause, The Disposal of Arsenic from Metallurgical Processes Its Status Regarding Ferric Arsenate , Extractive Metallurgy of Copper, Nickel and Cobalt, vol 1 (Fundamental Aspects), ed. R.G. Reddy andR.N Weizenbach (Warrendale, PA The Minerals, Metals and Materials Society, 1993), 1221-1237. [Pg.377]

Harris, G. B. Krause, E. 1993. The disposal of arsenic from metallurgical processes its status regarding ferric arsenate. Extractive Metallurgy of Nickel, Cobalt, and Associated Metals. TMS Annual Meeting, Denver, February 21-25. Abstracts volume. [Pg.238]

Cobalt compounds have been in use for centuries, notably as pigments ( cobalt blue ) in glass and porcelain (a double silicate of cobalt and potassium) the metal itself has been produced on an industrial scale only during the twentieth century. Cobalt is relatively uncommon but widely distributed it occurs biologically in vitamin B12 (a complex of cobalt(III) in which the cobalt is bonded octahedrally to nitrogen atoms and the carbon atom of a CN group). In its ores, it is usually in combination with sulphur or arsenic, and other metals, notably copper and silver, are often present. Extraction is carried out by a process essentially similar to that used for iron, but is complicate because of the need to remove arsenic and other metals. [Pg.401]

It is usually preferable to oxidise the compound directly as follows. Intimately mix 0 02-0 05 g. of the eompound with 3 g. of sodium peroxide and 2 g. of anhydrous sodium carbonate in a niekel erucible. Heat the crueible and its eontents with a small flame, gently at first, afterwards more strongly until the eontents are fused, and eontinue heating for a further 10 minutes. Allow to stand, extract the contents of the crucible with water, and filter. Add exeess of eoneentrated nitrie acid to the filtrate and test with ammonium molybdate reagent as above. A yellow preeipitate indicates the presenee of phosphorus. It must be borne in mind that the above treatment 1 eonvert any arsenie present into arsenate. [Pg.1043]

It is recommended that the eompound be fused with a mixture of sodium carbonate (2 parts) and sodium peroxide (1 part) as in the test for Plvoaphoms. Extract the fused mass with water, filter, and acidify with dilute hydrochloric acid. Pass hydrogen sulphide through the hot solution arsenic is precipitated as yellow arsenic sulphide. If antimony is present, it will be precipitated as orange antimony trisulphide. [Pg.1043]

Solvent extraction—purification of wet-process phosphoric acid is based on preferential extraction of H PO by an organic solvent vs the cationic impurities present in the acid. Because selectivity of acid over anionic impurities is usually not sufficient, precipitation or evaporation steps are included in the purification process for removal. Cmde wet-process acid is typically concentrated and clarified prior to extraction to remove post-precipitated sludge and improve partition of the acid into the solvent. Concentration also partially eliminates fluoride by evaporation of HF and/or SiF. Chemical precipitation of sulfate (as Ba or Ca salts), fluorosiUcates (as Na salt), and arsenic (as sulfides) may also be used as a prepurification step preceding solvent extraction. [Pg.328]

Arsenic pentasulfide (arsenic(V) sulfide), As S q, is stable in air up to 95°C, but at higher temperatures begins to dissociate into arsenous sulfide and sulfur. It is prepared by the fusion of arsenic with sulfur foUowed by extraction with ammonia and reprecipitation at low temperatures by addition of hydrochloric acid. Arsenic pentasulfide is precipitated at low temperatures from strongly acidic arsenate solutions by a rapid stream of hydrogen sulfide. It is hydrolyzed by boiling with water, yielding arsenous acid and sulfur. Salts derived from a number of thioarsenic acids are formed from arsenic pentasulfide and alkaH metal sulfides. [Pg.334]

EXTRACTION-SPECTROPHOTOMETRIC DETERMINATION OF PHOSPHATE AND ARSENATE USING IONIC ASSOCIATES OF POLYOXOMETALATES WITH BASIC DYES... [Pg.125]

An important tool for elucidating the steps in the pathway was the use of metabolie inhibitors. Adding an enzyme inhibitor to a cell-free extract caused an accumulation of intermediates in the pathway prior to the point of inhibition (Figure 18.12). Each inhibitor was specific for a particular site in the sequence of metabolic events. As the arsenal of inhibitors was expanded, the individual steps in metabolism were revealed. [Pg.579]

The following procedure has been recommended by the Analytical Methods Committee of the Society for Analytical Chemistry for the determination of small amounts of arsenic in organic matter.20 Organic matter is destroyed by wet oxidation, and the arsenic, after extraction with diethylammonium diethyldithiocarbamate in chloroform, is converted into the arsenomolybdate complex the latter is reduced by means of hydrazinium sulphate to a molybdenum blue complex and determined spectrophotometrically at 840 nm and referred to a calibration graph in the usual manner. [Pg.683]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Gold ores can be concentrated by froth flotation, the resulting concentrate being roasted at 600-800°C to oxidize off sulphur and arsenic as their oxides. The product is extracted with cyanide under oxidizing conditions (using either peroxide or air itself) before displacement with powdered zinc. More reactive metals (silver etc.) can be removed by chlorination of molten gold. [Pg.276]

USAARMCOM Regulation 10-10 assigns Pica-tinny Arsenal its mission, major functions and materiel assignments within the Armament Command. The following is an extract from that regulation ... [Pg.743]

Munoz O, Velez D, Montoro R (1999) Optimization of the solubilization, extraction and determination of inorganic arsenic [As(III) i- As(V)] in seafood products by acid digestion, solvent extraction and hydride generation atomic absorption spectrometry. Analyst 124 601-607. [Pg.233]

The most general method for the simultaneous analysis of oxyanions by gas chromatography is the formation of trimethylsilyl derivatives. Trimethylsilyl derivatives of silicate, carbonate, oxalate, borate, phosphite, phosphate, orthophosphate, arsenite, arsenate, sulfate and vanadate, usually as their ammonium salts, are readily prepared by reaction with BSTFA-TMCS (99 1). Fluoride can be derivatized in aqueous solution with triethylchlorosilane and the triethylfluorosilane formed extracted into an immiscible organic solvent for analysis by gas chromatography [685). [Pg.959]

V. H. Aprahamian and D. G. Demopoulos, The Solution Chemistry and Solvent Extraction Behaviour of copper, iron, nickel, zinc, lead, tin, Ag, arsenic, antimony, bismuth, selenium and tellurium in Acid Chloride Solutions Reviewed from the Standpoint of PGM Refining, Mineral Processing and Extractive Metallurgy Review, Vol. 14, p. 143,1995. [Pg.579]

The ability of metal ions to form complexes with formazans is utilized to determine these ions either directly (for low valent reducing ions) or indirectly in the presence of a reducing agent. Among others, molybdenum(VI) and vanadium(V) have been determined using this method.442,443 Indirect methods have been reported for the analyses of substances that do not reduce tetrazolium salts. Examples include arsenic in nickel ores436 and traces of selenium.437 A method for the extraction and analysis of a number of metal ternary ion association complexes has been described.444 - 448... [Pg.274]

The use of plant extracts for insect control dates into antiquity the use of Paris green as an insecticide for control of the Colorado potato beetle in 1867 probably marks the beginning of the modern era of chemical control of injurious insects. The development of lead arsenate followed later in the nineteenth century for gypsy moth control. The commercial production of nicotine insecticides, the production of calcium arsenate at the time of the first world war, and the use of fluorine, arsenical, and cyanide compounds, as well as other inorganic chemicals for insect control, were important steps in pest control. These chemicals were applied largely by dilute high pressure sprays or dusts. [Pg.218]

A waste is toxic under 40 CFR Part 261 if the extract from a sample of the waste exceeds specified limits for any one of eight elements and five pesticides (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, endrin, methoxychlor, toxaphene, 2,4-D and 2,4,5-TP Silvex using extraction procedure (EP) toxicity test methods. Note that this narrow definition of toxicity relates to whether a waste is defined as hazardous for regulatory purposes in the context of this chapter, toxicity has a broader meaning because most deep-well-injected wastes have properties that can be toxic to living organisms. [Pg.784]

In 1933 Challenger et al. discovered that trimethylarsine was synthesized from inorganic arsenic compounds by molds (93). Recently, McBride and Wolfe (94), have reported the synthesis of dimethylarsine from arsenate by cell extracts of the methanogenic bacterium M. O. H. Methylcobalamin is the alkylating coenzyme for this synthesis which requires reduction of arsenate to arsenite, methylation of arsenite to methylarsonic acid, reduction and methylation of methylarsonic acid to dimethylarsinic acid, and finally a four electron reduction of dimethylarsinic acid to dimethylarsine (Fig. 13). [Pg.63]


See other pages where Extraction arsenic is mentioned: [Pg.57]    [Pg.62]    [Pg.331]    [Pg.399]    [Pg.408]    [Pg.329]    [Pg.388]    [Pg.57]    [Pg.62]    [Pg.331]    [Pg.399]    [Pg.408]    [Pg.329]    [Pg.388]    [Pg.992]    [Pg.543]    [Pg.379]    [Pg.379]    [Pg.176]    [Pg.281]    [Pg.207]    [Pg.538]    [Pg.577]    [Pg.257]    [Pg.263]    [Pg.378]    [Pg.196]    [Pg.992]    [Pg.78]    [Pg.612]    [Pg.521]    [Pg.8]   
See also in sourсe #XX -- [ Pg.387 ]

See also in sourсe #XX -- [ Pg.622 ]

See also in sourсe #XX -- [ Pg.436 ]




SEARCH



© 2024 chempedia.info