Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics demethylation

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Ether groups in the benzene ring of quinazoline behave as in ethers of homocyclic aromatic compounds, e.g., they can be demethylated with anhydrous aluminum chloride. Allyl ethers also undergo a Claisen rearrangement/ ... [Pg.271]

Trimethyloxazolo[4,5-/]quinoline prepared from 2,7-dimethyl-6-methoxyquinoline using nitration, demethylation (or reversed), reduction, and cy-clization with acetic anhydride confirms unambigously the structure of the aromatic part of the antibiotic X-537A after nitration and alkaline degradation (71JOC3621). [Pg.193]

Condensation of adipic acid derivative 17 with phenylethylamine in the presence of carbo-nyldiimidazole affords the bis-adipic acid amide 18. The synthesis is completed by reduction of the carbonyl groups with diborane followed by demethylation of the aromatic methoxy groups with hydrogen bromide the afford dopexamine (19) [3]. [Pg.22]

Smith RV, Erhardt PW, Leslie SW. Microsomal O-demethylation, A-demethyl-ation and aromatic hydroxylation in the presence of bisulfite and dithiothreitol. Res Commun Chem Path Pharmacol 1975 12 181-4. [Pg.464]

Grbic-Galic D (1986) O-Demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J Appl Bacteriol 61 491-497. [Pg.82]

In contrast, cells grown anaerobically with nitrate and vanillate were able to oxidize vanillate under both aerobic and anaerobic conditions. The cells were also able to demethylate a much wider spectrum of aromatic methoxy compounds under anaerobic conditions than under aerobic conditions (Taylor 1983). Such subtleties should be clearly appreciated and taken into consideration in evaluating the degradative potential of comparable organisms under different physiological conditions. [Pg.150]

Londry KL, PM Fedorak (1993) Use of fluorinated compounds to detect aromatic metabolites from m-cresol in a methanogenic consortium evidence for a demethylation reaction. Appl Environ Microbiol 59 2229-2238. [Pg.454]

The low specificity of electron-donating substrates is remarkable for laccases. These enzymes have high redox potential, making them able to oxidize a broad range of aromatic compounds (e.g. phenols, polyphenols, methoxy-substituted phenols, aromatic amines, benzenethiols) through the use of oxygen as electron acceptor. Other enzymatic reactions they catalyze include decarboxylations and demethylations [66]. [Pg.142]

One of numerous examples of LOX-catalyzed cooxidation reactions is the oxidation and demethylation of amino derivatives of aromatic compounds. Oxidation of such compounds as 4-aminobiphenyl, a component of tobacco smoke, phenothiazine tranquillizers, and others is supposed to be the origin of their damaging effects including reproductive toxicity. Thus, LOX-catalyzed cooxidation of phenothiazine derivatives with hydrogen peroxide resulted in the formation of cation radicals [40]. Soybean LOX and human term placenta LOX catalyzed the free radical-mediated cooxidation of 4-aminobiphenyl to toxic intermediates [41]. It has been suggested that demethylation of aminopyrine by soybean LOX is mediated by the cation radicals and neutral radicals [42]. Similarly, soybean and human term placenta LOXs catalyzed N-demethylation of phenothiazines [43] and derivatives of A,A-dimethylaniline [44] and the formation of glutathione conjugate from ethacrynic acid and p-aminophenol [45,46],... [Pg.810]

N-demethylation at the three N-methyl sites. In this regard, the 3-N-demethylation of caffeine to generate paraxanthine can serve as a particularly good in vivo indicator of the presence and activity of CYP1A2 (Fig. 4.7). In the case of phenacetin, CYP1A2 catalyzes N-deethylation to generate acetaminophen. Not unexpectedly, 1 A2 s selectivity toward heterocyclic aromatic substrates carries over to inhibitors of the enzyme. Furafylline (Fig. 4.7) is an example of a particularly potent 1A2 mechanism-based inhibitor. [Pg.42]

A A,A-dimethylcarboxamido group attached to other aromatic systems can be hydrolyzed enzymatically as demonstrated by the metabolism of the ring-opened 1,4-benzodiazepine derivative 4.84 in dogs and rats [53], Here also, hydrolysis was shown to proceed via the secondary and primary amide formed by A-demethylation. [Pg.122]

A different mode of reaction, however, is observed in photoreductions of nitroaromatics by aromatic tertiary amines. Irradiation of benzene solutions of N-methylated anilines and either m-chloronitrobenzene or 1-nitronaphthalene results in oxidative demethylation of the amines accompanied with reduction of the nitro compound to the corresponding arylamine 49). The authors suggest that hydrogen abstraction from the methyl group takes place as the primary chemical event. [Pg.58]

Davis (94b) aromatized several Cg and C9 hydrocarbons with a quaternary carbon atom over chromia- and platinum-on-alumina catalysts. Here the reactions of 1,1-dimethylcyclohexane, and 2,2- and 3,3-dimethylhexanes will be compared (Table V). 1,1-Dimethylhexane suffered demethylation predominantly over chromia and alkaline platinum however, with less alkaline platinum, isomerization to xylenes occurred. [Pg.302]

Skeletal ring contraction steps of primary C7 and Cg rings are more probable than bicyclic intermediates (132b). Aromatization of methylcyclo-pentane indicated no carbonium mechanism with a nonacidic catalyst. Instead, Pines and Chen (132b) proposed a mechanism similar to that defined later as bond shift. This is a methyl shift. Two additional isomerization pathways characteristic of chromia have also been demonstrated vinyl shift (94) and isomerization via C3 and C4 cyclic intermediates (90a). These were discussed in Section III. 1,1-Dimethylcyclohexane and 4,4-dimethyl-cyclohexene gave mainly toluene over various chromia catalysts. Thus, both skeletal isomerization and demethylation activities of chromia have been verified. The presence of an acidic almnina support enhances isomerization dual function effects are thus also possible. [Pg.317]

The presence of metal may catalyze demethylation and can occur to some extent in catalysts where the metal function is under-passivated, as by incomplete sulfiding. This would convert valuable xylenes to toluene. The demethylation reaction is usually a small contributor to xylene loss. Metal also catalyzes aromatics saturation reactions. While this is a major and necessary function to facilitate EB isomerization, any aromatics saturation is undesirable for the process in which xylene isomerization and EB dealkylation are combined. Naphthenes can also be ring-opened and cracked, leading to light gas by-products. The zeolitic portion of the catalyst participates in the naphthene cracking reactions. Cracked by-products can be more prevalent over smaller pore zeolite catalysts. [Pg.494]

N-Demethylation 10,11-epoxidation aromatic hydroxylation N-oxidation N-glucuronidation... [Pg.179]


See other pages where Aromatics demethylation is mentioned: [Pg.443]    [Pg.443]    [Pg.445]    [Pg.155]    [Pg.102]    [Pg.297]    [Pg.236]    [Pg.10]    [Pg.459]    [Pg.577]    [Pg.276]    [Pg.32]    [Pg.27]    [Pg.780]    [Pg.143]    [Pg.189]    [Pg.234]    [Pg.320]    [Pg.341]    [Pg.406]    [Pg.406]    [Pg.45]    [Pg.243]    [Pg.242]    [Pg.410]    [Pg.109]    [Pg.32]    [Pg.147]    [Pg.301]    [Pg.183]    [Pg.204]    [Pg.27]    [Pg.91]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Aromatic ethers, demethylation

Demethylation

Demethylation aromatic methyl ethers

Demethylation of aromatics

Demethylations

© 2024 chempedia.info