Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds sulfides

More recently, chemiluminescence detectors based on redox reactions have made possible the detection of many classes of compounds not detected by flame ionization. In the redox chemiluminescence detector (RCD), the effluent from the column is mixed with nitrogen dioxide and passed across a catalyst containing elemental gold at 200-400°C. Responsive compounds reduce the nitrogen dioxide to nitric oxide. The nitric oxide is reacted with ozone to give the chemiluminescent emission. The RCD yields a response from compounds capable of undergoing dehydrogenation or oxidation and produces sensitive emissions from alcohols, aldehydes, ketones, acids, amines, olifins, aromatic compounds, sulfides, and thiols. [Pg.54]

In general, peroxomonosulfates have fewer uses in organic chemistry than peroxodisulfates. However, the triple salt is used for oxidizing ketones (qv) to dioxiranes (7) (71,72), which in turn are useful oxidants in organic chemistry. Acetone in water is oxidized by triple salt to dimethyldioxirane, which in turn oxidizes alkenes to epoxides, polycycHc aromatic hydrocarbons to oxides and diones, amines to nitro compounds, sulfides to sulfoxides, phosphines to phosphine oxides, and alkanes to alcohols or carbonyl compounds. [Pg.95]

Sulfur Compounds. All crude oils contain sulfur in one of several forms including elemental sulfur, hydrogen sulfide, carbonyl sulfide (COS), and in aliphatic and aromatic compounds. The amount of sulfur-containing compounds increases progressively with an increase in the boiling point of the fraction. A majority of these compounds have one sulfur atom per molecule, but certain aromatic and polynuclear aromatic molecules found in low concentrations in crude oil contain two and even three sulfur atoms. Identification of the individual sulfur compounds in the heavy fractions poses a considerable challenge to the analytical chemist. [Pg.322]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

Diaryl sulfides can be prepared by treating aromatic compounds with SCI, and a Friedel-Crafts catalyst. Other reagents that can bring about the same result are S2CI2, thionyl chloride, and even sulfur itself. A catalyst is not always necessary. [Pg.703]

When thionyl chloride is used, diaryl sulfoxides are usually the main products. Unsymmetrical diaryl sulfides can be obtained by treatment of an aromatic compound with an aryl sulfenyl chloride (ArSCl) in the presence of a trace amount of iron powder.Aromatic amines and phenols can be alkylthiolated (giving mostly ortho product) by treatment with an alkyl disulfide and a Lewis acid catalyst. With certain substrates (primary amines with a chloro group, or a group not replaceable by chloro, in the para position), treatment with S2CI2 and NaOH gives thiophenolate salts ... [Pg.704]

Lomans BP, P Leijdekkers, J-P Wesselink, P Bakkes, A Pol, C van der Drift, HIP op den Camp (2001) Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 67 4017-4203. [Pg.583]

About 100 gal of process wastewater is typically generated from 1 t of coke produced.15 These wastewaters from byproduct coke making contain high levels of oil and grease, ammonia nitrogen, sulfides, cyanides, thiocyanates, phenols, benzenes, toluene, xylene, other aromatic volatile components, and polynuclear aromatic compounds. They may also contain toxic metals such as antimony, arsenic, selenium, and zinc. Water-to-air transfer of pollutants may take place due to the escape of volatile pollutants from open equalization and storage tanks and other wastewater treatment systems in the plant. [Pg.43]

A powerful and efficient method for the preparation of poly(ketone)s is the direct polycondensation of dicarboxylic acids with aromatic compounds or of aromatic carboxylic acids using phosphorus pentoxide/methanesulfonic acid (PPMA)16 or polyphosphoric acid (PPA)17 as the condensing agent and solvent. By applying both of these reagents to the synthesis of hexafluoroisopropylidene-unit-containing aromatic poly(ketone)s, various types of poly(ketone)s such as poly(ether ketone) (11), poly(ketone) (12), poly(sulfide ketone) (13), and poly-... [Pg.137]

Aromatic Compounds with Sulfides and Mercaptans. Alkyl sulfides and mercaptans function very similarly to ethers and alcohols. Hydrogen sulfide is produced and it escapes as a gas not being significantly soluble in liquid hydrogen fluoride. In this respect the technique of procedure is similar to that used for alkyl halides. [Pg.213]

Just as in the case of aromatic compounds isoparaffins can be alkylated with sources of alkyl groups other than olefins. Alkyl halides, alcohols, ethers, mercaptans, sulfides, etc., can be used. When olefins are used some alkyl fluorides from a combination of olefin and hydrogen fluoride are always formed. The quantity of this in the product can be greatly reduced by providing conditions under which the alkyl fluoride is used in alkylation. The apparent paradox is provided, in that the fluoride content of the product is lessened by further treatment with hydrogen fluoride. A more thorough treatment of the details of the alkylation of isoparaffins with olefins is found elsewhere in this volume. [Pg.215]

Carbon Black Oil Usually a viscous, highly aromatic residual oil utilized in the manufacture of carbon black. These oils may also contain polynuclear aromatic compounds, hydrogen sulfide, and ash. [Pg.342]

The edible portion of broccoli Brassica oleracea var. italica) is the inflorescence, and it is normally eaten cooked, with the main meal. Over 40 volatile compounds have been identified from raw or cooked broccoli. The most influential aroma compounds found in broccoli are sulfides, isothiocyanates, aliphatic aldehydes, alcohols and aromatic compounds [35, 166-169]. Broccoli is mainly characterised by sulfurous aroma compounds, which are formed from gluco-sinolates and amino acid precursors (Sects. 7.2.2, 7.2.3) [170-173]. The strong off-odours produced by broccoli have mainly been associated with volatile sulfur compounds, such as methanethiol, hydrogen sulfide, dimethyl disulfide and trimethyl disulfide [169,171, 174, 175]. Other volatile compounds that also have been reported as important to broccoli aroma and odour are dimethyl sulfide, hexanal, (Z)-3-hexen-l-ol, nonanal, ethanol, methyl thiocyanate, butyl isothiocyanate, 2-methylbutyl isothiocyanate and 3-isopropyl-2-methoxypyrazine... [Pg.169]

Shipment and. Storage, Sulfur monochloride is minimally corrosive to carbon steel and iron when dry. If it is necessary to avoid discoloration caused by iron sulfide formation or chloride stress cracking, 310 stainless steel should be used. Sulfur monochloride is shipped in tank cars, tank trucks, and steel drums. When wet, it behaves like hydrochloric acid and attacks steel, cast iron, aluminum, stainless steels, copper and copper alloys, and many nickel-based materials. Alloys of 62 Ni—28 Mo and 54 Ni—15 Cr—16 Mo are useful under these conditions. Under DOT HM-181 sulfur monochloride is classified as a Poison Inhalation Hazard (PIH) Zone B, as well as a Corrosive Material (DOT Hazard Class B). Shipment information is available (140). Uses, The reaction of S-CL with aromatic compounds can yield disulfides or mixtures of mono-, di-, and polysulfides. [Pg.138]

F-Teda BF4 (6) is very effective for the fluorination of a wide variety of organic substrates steroidal enol acetates (Table 7)92 and silyl enol ethers, certain carbanions, mildly activated aromatic compounds, and sulfides bearing oc-H atoms.73,75,76,77,84,88 90 The products are obtained with good yields and regioselectivity under very mild reaction conditions (Table 8). [Pg.462]

Oxidations. This reagent oxidizes sulfides to sulfoxides in refluxing chloroform in 70 90% yield. It effects oxidative decarboxylation of a-hydroxy carboxylic acids to the noraldchydc in 85 90% yield (equation I). It also oxidatively cleaves aromatic compounds of the type ArCOCHjBr to ArCOOH in about 75% yield.1... [Pg.381]

JBC(244)2590,76JBC(251)6994>. The compounds monooxygenated by flavin-dependent enzymes include both electrophilic and nucleophilic species. These compounds can be divided into three groups for the convenience of discussion (i) amines and sulfides, (ii) aromatic compounds with electron releasing substituents, and (iii) aldehydes and ketones (Table 3). [Pg.255]


See other pages where Aromatic compounds sulfides is mentioned: [Pg.100]    [Pg.87]    [Pg.100]    [Pg.87]    [Pg.551]    [Pg.69]    [Pg.103]    [Pg.206]    [Pg.386]    [Pg.62]    [Pg.322]    [Pg.117]    [Pg.580]    [Pg.949]    [Pg.102]    [Pg.579]    [Pg.113]    [Pg.166]    [Pg.214]    [Pg.113]    [Pg.128]    [Pg.265]    [Pg.110]    [Pg.165]    [Pg.648]    [Pg.9]    [Pg.70]    [Pg.179]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



Hydrogen sulfide reduction, aromatic nitro compounds

Sulfide aromatic nitro compounds

Sulfide compounds

Sulfides, aromatic

Sulfur compounds aromatic sulfides

© 2024 chempedia.info