Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic amines preparation

The SEM derivative of a secondaiy aromatic amine, prepared from SEMCl (NaH, DMF, 0°, 100% yield), can be cleaved with HCl (EtOH, >88% yield). ... [Pg.363]

C. A typical aromatic amine. Best prepared by the prolonged action of concentrated ammonia solution at a high temperature upon anthraquinone-l-sulphonic acid in the presence of BaClj and by reduction of the corresponding nitro compound or by amination of the chloroanthraquinone. [Pg.29]

They are prepared by the action of HNO2 on aromatic amines. The amine is dissolved in excess of mineral acid and sodium nitrite is added slowly until a slight excess of HNO2 is present. The reaction is usually carried out in ice-cold solution. The solution then contains the diazonium salt of the mineral acid used, anhydrous diazonium salts of unpredictable stability may be precipitated with complex anions like PF , SnCl6 BF4 . [Pg.133]

SchifT s bases A -Arylimides, Ar-N = CR2, prepared by reaction of aromatic amines with aliphatic or aromatic aldehydes and ketones. They are crystalline, weakly basic compounds which give hydrochlorides in non-aqueous solvents. With dilute aqueous acids the parent amine and carbonyl compounds are regenerated. Reduction with sodium and alcohol gives... [Pg.353]

A halogen atom directly attached to a benzene ring is usually unreactive, unless it is activated by the nature and position of certain other substituent groups. It has been show n by Ullmann, however, that halogen atoms normally of low reactivity will condense with aromatic amines in the presence of an alkali carbonate (to absorb the hydrogen halide formed) and a trace of copper powder or oxide to act as a catalyst. This reaction, known as the Ullmant Condensation, is frequently used to prepare substituted diphenylamines it is exemplified... [Pg.217]

The above is a general procedure for preparing trialkyl orthophosphates. Similar yields are obtained for trimethyl phosphate, b.p. 62°/5 mm. triethyl phosphate, b.p. 75-5°/5 mm. tri-n-propyl phosphate, b.p. 107-5°/5 mm. tri-Mo-propyl phosphate, b.p. 83-5°/5 mm. tri-wo-butyl phosphate, b.p. 117°/5-5 mm. and tri- -amyl phosphate, b.p. 167-5°/5 mm. The alkyl phosphates are excellent alkylating agents for primary aromatic amines (see Section IV,41) they can also be ua for alkylating phenols (compare Sections IV,104-105). Trimethyl phosphate also finds application as a methylating agent for aliphatie alcohols (compare Section 111,58). [Pg.304]

It is convenient to include under Aromatic Amines the preparation of m-nitroaniline as an example of the selective reduction of one group in a polynitro compound. When wt-dinitrobenzene is allowed to react with sodium polysulphide (or ammonium sulphide) solution, only one of the nitro groups is reduced and m-nitroanUine results. Some sulphur separates, but the main reaction is represented by ... [Pg.563]

Acetyl derivatives of aromatic amines may be prepared either witli acetic anhydride or acetic acid or with a mixture of both reagents. Primary amines react readily upon warming with acetic anhydride to yield, in the first instance, the mono-acetyl derivative, for example ... [Pg.576]

In general, benzoylation of aromatic amines finds less application than acetylation in preparative work, but the process is often employed for the identification and characterisation of aromatic amines (and also of hydroxy compounds). Benzoyl chloride (Section IV, 185) is the reagent commonly used. This reagent is so slowly hydrolysed by water that benzoylation can be carried out in an aqueous medium. In the Schotten-Baumann method of benzoylation the amino compound or its salt is dissolved or suspended in a slight excess of 8-15 per cent, sodium hydroxide solution, a small excess (about 10-15 per cent, more than the theoretical quantity) of benzoyl chloride is then added and the mixture vigorously shaken in a stoppered vessel (or else the mixture is stirred mechanically). Benzoylation proceeds smoothly and the sparingly soluble benzoyl derivative usually separates as a solid. The sodium hydroxide hydrolyses the excess of benzoyl chloride, yielding sodium benzoate and sodium chloride, which remain in solution ... [Pg.582]

This preparation illustrates the direct iodination of a primary aromatic amine by iodine the sodium bicarbonate removes the hydrogen iodide as formed ... [Pg.647]

Although It IS possible to prepare aryl chlorides and aryl bromides by electrophilic aromatic substitution it is often necessary to prepare these compounds from an aromatic amine The amine is converted to the corresponding diazonmm salt and then treated with copper(I) chloride or copper(I) bromide as appropriate... [Pg.948]

R—N=N Aryl diazonium 10ns are formed by treatment of primary aromatic amines with nitrous acid They are ex tremely useful in the preparation of aryl halides phenols and aryl cyanides... [Pg.1281]

Carboxyhc acids react with aryl isocyanates, at elevated temperatures to yield anhydrides. The anhydrides subsequently evolve carbon dioxide to yield amines at elevated temperatures (70—72). The aromatic amines are further converted into amides by reaction with excess anhydride. Ortho diacids, such as phthahc acid [88-99-3J, react with aryl isocyanates to yield the corresponding A/-aryl phthalimides (73). Reactions with carboxyhc acids are irreversible and commercially used to prepare polyamides and polyimides, two classes of high performance polymers for high temperature appHcations where chemical resistance is important. Base catalysis is recommended to reduce the formation of substituted urea by-products (74). [Pg.452]

A AlI lation. A number of methods are available for preparation of A/-alkyl and A[,A/-dialkyl derivatives of aromatic amines. Passing a mixture of aniline and methanol over a copper—zinc oxide catalyst at 250°C and 101 kPa (1 atm) reportedly gives /V-methylaniline [100-61-8] in 96% yield (1). Heating aniline with methanol under pressure or with excess methanol produces /V, /V-dimethylaniline [121 -69-7] (2,3). [Pg.229]

Sulfonation. Aniline reacts with sulfuric acid at high temperatures to form -aminoben2enesulfonic acid (sulfanilic acid [121 -57-3]). The initial product, aniline sulfate, rearranges to the ring-substituted sulfonic acid (40). If the para position is blocked, the (9-aminoben2enesulfonic acid derivative is isolated. Aminosulfonic acids of high purity have been prepared by sulfonating a mixture of the aromatic amine and sulfolane with sulfuric acid at 180-190°C (41). [Pg.231]

Although this reduction is more expensive than the Bnchamp reduction, it is used to manufacture aromatic amines which are too sensitive to be made by other methods. Such processes are used extensively where selectivity is required such as in the preparation of nitro amines from dinitro compounds, the reduction of nitrophenol and nitroanthraquinones, and the preparation of aminoazo compounds from the corresponding nitro derivatives. Amines are also formed under the conditions of the Zinin reduction from aromatic nitroso and azo compounds. [Pg.262]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

To minimize the formation of fuhninating silver, these complexes should not be prepared from strongly basic suspensions of silver oxide. Highly explosive fuhninating silver, beheved to consist of either silver nitride or silver imide, may detonate spontaneously when silver oxide is heated with ammonia or when alkaline solutions of a silver—amine complex are stored. Addition of appropriate amounts of HCl to a solution of fuhninating silver renders it harmless. Stable silver complexes are also formed from many ahphatic and aromatic amines, eg, ethylamine, aniline, and pyridine. [Pg.90]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

CCI4 plus H2O for 10 hours at room temperature to give a 63% yield of (CH2)2CCgH40CSCl (57). Phenylthiocarbamoyl chlorides are useful as intermediates for pharmaceuticals and agrochemicals were prepared by the reaction of CCl SCl with aromatic amines (58). [Pg.132]

The Bart reaction is successful with a wide variety of aromatic and heterocycHc amines. A variation in which an aromatic amine, in the presence of arsenic trichloride, is dia2oti2ed in an organic solvent (the ScheUer reaction) has also found wide appHcation. Both arsonic and arsinic acids can be prepared by the ScheUer reaction which often gives better yields than the Bart reaction with electron-attracting substituents on the aromatic ring. For the commercial preparation of 4-aminophenylarsonic acid [98-50-0] (arsaniUc acid), C HgAsNO, and 4-hydroxyphenylarsonic acid [98-14-6] C H AsO, the Bnchamp reaction is used ... [Pg.338]

Bake sulfonation is an important variant of the normal sulfonation procedure. The reaction is restricted to aromatic amines, the sulfate salts of which ate prepared and heated (dry) at a temperature of approximately 200°C in vacuo. The sulfonic acid group migrates to the ortho or para positions of the amine to give a mixture of orthanilic acid [88-21-1] and sulfanilic acid [121 -57-3] respectively. This tendency is also apparent in polynuclear systems so that 1-naphthylamine gives 1-naphthy1amine-4-su1fonic acid. [Pg.290]

A Methylanthrapyridone and Its Derivatives. 6-Bromo-3-methylanthrapyridone [81-85-6] (75) is an important iatermediate for manufacturiag dyes soluble ia organic solvents. These solvent dyes are prepared by replacing the bromine atom with various kiads of aromatic amines. 6-Bromo-3-methylanthrapyridone is prepared from 1-methyl amino-4-bromoanthra quin one (43) by acetylation with acetic anhydride followed by ring closure ia alkaU. The startiag material of this route is anthraquiaoae-l-sulfonic acid (16). [Pg.317]

Cl Acid Gieen 25 [4403-90-1] (3) (Cl 61570) was also invented in 1894. This dye shows improved wetfastness, and is prepared from leucoquinizarin by reaction with 2 moles of i)-toluidine in a similat manner to the preparation of Cl Acid Violet 43 (134). Wetfastness and leveling properties may be altered by choosing the substituents of arylamines. The introduction of alkyl groups into aromatic amines improves the wetfastness and affinity in neutral or weekly acid baths. Examples ate Cl Acid Blue 80 [4474-24-27] (131) (Cl 61585) and Cl Acid Gieen 27 [6408-57-7] (132) (Cl 61580). [Pg.325]

Diphenylcinnoline can be prepared from benzil monophenylhydrazone in the presence of about 80% sulfuric acid (49MI21200). Synthetically more important, however, is the cyclization of mesoxalyl chloride phenylhydrazones under Frledel-Crafts -conditions (61JCS2828). As outlined in Scheme 67, the starting mesoxalate phenylhydrazones are obtained by coupling dlazotized aromatic amines with diethyl malonate. After conversion... [Pg.42]

Amine oxides, prepared to protect tertiary amines during methylation and to prevent their protonation in diazotized aminopyridines, can be cleaved by reduction (e.g., SO2/H2O, 1 h, 22°, 63% yield H2/Pd-C, AcOH, AC2O, 7 h, 91% yield Zn/HCl, 30% yield). Photolytic reduction of an aromatic amine oxide has been reported [i.e., 4-nitropyridine A-oxide, 300 nm, (MeO)3PO/CH2Cl2, 15 min, 85-95% yieldl. ... [Pg.375]


See other pages where Aromatic amines preparation is mentioned: [Pg.42]    [Pg.42]    [Pg.28]    [Pg.29]    [Pg.49]    [Pg.224]    [Pg.139]    [Pg.182]    [Pg.244]    [Pg.244]    [Pg.253]    [Pg.257]    [Pg.260]    [Pg.263]    [Pg.270]    [Pg.209]    [Pg.426]    [Pg.385]    [Pg.131]    [Pg.164]    [Pg.57]   
See also in sourсe #XX -- [ Pg.532 ]




SEARCH



Aminals, preparation

Amination, 15 preparation

Amines preparation

Aromatic amination

Aromatic amines

Aromatic preparation

Aromatics amination

Preparation from aromatic amines

© 2024 chempedia.info