Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic amines direct

Condensation products of 4-nittotoluene-2-sulfonic acid or its detivatives together with aromatic amines. Direct Orange 28 (Cl 40065) (4) is an example. The amine in this case is i)i n -diaminoben2ene. [Pg.454]

A halogen atom directly attached to a benzene ring is usually unreactive, unless it is activated by the nature and position of certain other substituent groups. It has been show n by Ullmann, however, that halogen atoms normally of low reactivity will condense with aromatic amines in the presence of an alkali carbonate (to absorb the hydrogen halide formed) and a trace of copper powder or oxide to act as a catalyst. This reaction, known as the Ullmant Condensation, is frequently used to prepare substituted diphenylamines it is exemplified... [Pg.217]

This preparation illustrates the direct iodination of a primary aromatic amine by iodine the sodium bicarbonate removes the hydrogen iodide as formed ... [Pg.647]

Benzal derivatives. Primary aromatic amines generally condense directly with benzaldehyde to form benzal derivatives (Schiff s bases or anils) ... [Pg.653]

Aromatic amines can be produced by reduction of the corresponding nitro compound, the ammonolysis of an aromatic haUde or phenol, and by direct amination of the aromatic ring. At present, the catalytic reduction of nitrobenzene is the predominant process for manufacture of aniline. To a smaller extent aniline is also produced by ammonolysis of phenol. [Pg.228]

Nitration. Direct nitration of aromatic amines with nitric acid is not a satisfactory method, because the amino group is susceptible to oxidation. The amino group can be protected by acetylation, and the acetylamino derivative is then used in the nitration step. Nitration of acetanilide in sulfuric acid yields the 4-nitro compound that is hydroly2ed to -rutroaruline [100-01-6]. [Pg.231]

Oxidation of Aromatic Amines. The technically important dye Direct Yellow 28 (23) [10114-47-3] (Cl 19555) for cotton usage is manufactured by oxidation of dehydrothio- i ra-toluidinesulfonic acid sodium salt with sodium hypochlorite ia aqueous alkaline solutioa. [Pg.429]

Although it has been reported (138) that decolorization of wastewater containing reactive azo dyes with sodium hydrosulfite is possible only to a limited extent, others have demonstrated good reduction (decolorization). For example, using zinc hydrosulfite for the decolorization of dyed paper stock (139) resulted in color reduction of 98% for azo direct dyes (139). A Japanese patent (140) describes reducing an azo reactive dye such as Reactive Yellow 3 with sodium hydrosulfite into its respective aromatic amines which ate more readily adsorbable on carbon than the dye itself. This report has been confirmed with azo acid, direct, and reactive dyes (22). [Pg.382]

A surpnsing feature of the reactions of hexafluoroacetone, trifluoropyruvates, and their acyl imines is the C-hydroxyalkylation or C-amidoalkylaOon of activated aromatic hydrocarbons or heterocycles even in the presence of unprotected ammo or hydroxyl functions directly attached to the aromatic core Normally, aromatic amines first react reversibly to give N-alkylated products that rearrange thermally to yield C-alkylated products. With aromatic heterocycles, the reaction usually takes place at the site of the maximum n electron density [55] (equaUon 5). [Pg.843]

The so-called transdiazotizations are mechanistically related to the introduction of diazonio groups using sulfonic acid azides. An aromatic diazonium ion forms a triazene (diazoamino compound) with an aromatic amine the triazene tautomerizes and dissociates at the Na-Np bond of the original diazonium ion. This reaction is important for the synthesis of the 4-aminobiphenyl-4,-diazonium ion, which cannot be obtained by direct (mono-)diazotization of 4,4 -diaminobiphenyl (Allan and... [Pg.35]

Many pharmacologically active compounds have been synthesized using 5-bromoisoquinoline or 5-bromo-8-nitroisoquinoline as building blocks.6 7 8 9 10 11 The haloaromatics participate in transition-metal couplings 81012 and Grignard reactions. The readily reduced nitro group of 5-bromo-8-nitroisoquinoline provides access to an aromatic amine, one of the most versatile functional groups. In addition to N-alkylation, TV-acylation and diazotiation, the amine may be utilized to direct electrophiles into the orthoposition. [Pg.52]

Other compounds with nitrogen-nitrogen bonds have been used instead of diazonium salts. Among these are N-nitroso amides [ArN(NO)COR], triazenes, and azo compounds. Still another method involves treatment of an aromatic primary amine directly with an alkyl nitrite in an aromatic substrate as solvent. ... [Pg.929]

Plasticiser/oil in rubber is usually determined by solvent extraction (ISO 1407) and FTIR identification [57] TGA can usually provide good quantifications of plasticiser contents. Antidegradants in rubber compounds may be determined by HS-GC-MS for volatile species (e.g. BHT, IPPD), but usually solvent extraction is required, followed by GC-MS, HPLC, UV or DP-MS analysis. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out. The determination of antioxidants in rubbers by means of HPLC and TLC has been reviewed [58], The TLC technique for antidegradants in rubbers is described in ASTM D 3156 and ISO 4645.2 (1984). Direct probe EIMS was also used to analyse antioxidants (hindered phenols and aromatic amines) in rubber extracts [59]. ISO 11089 (1997) deals with the determination of /V-phenyl-/9-naphthylamine and poly-2,2,4-trimethyl-1,2-dihydroquinoline (TMDQ) as well as other generic types of antiozonants such as IV-alkyl-AL-phenyl-p-phenylenediamines (e.g. IPPD and 6PPD) and A-aryl-AL-aryl-p-phenylenediamines (e.g. DPPD), by means of HPLC. [Pg.35]

FD-MS is also an effective analytical method for direct analysis of many rubber and plastic additives. Lattimer and Welch [113,114] showed that FD-MS gives excellent molecular ion spectra for a variety of polymer additives, including rubber accelerators (dithiocar-bamates, guanidines, benzothiazyl, and thiuram derivatives), antioxidants (hindered phenols, aromatic amines), p-phcnylenediamine-based antiozonants, processing oils and phthalate plasticisers. Alkylphenol ethoxylate surfactants have been characterised by FD-MS [115]. Jack-son et al. [116] analysed some plastic additives (hindered phenol AOs and benzotriazole UVA) by FD-MS. Reaction products of a p-phenylenediaminc antiozonant and d.v-9-lricoscnc (a model olefin) were assessed by FD-MS [117],... [Pg.375]

In an acetone extract from a neoprene/SBR hose compound, Lattimer et al. [92] distinguished dioctylph-thalate (m/z 390), di(r-octyl)diphenylamine (m/z 393), 1,3,5-tris(3,5-di-f-butyl-4-hydroxybenzyl)-isocyanurate m/z 783), hydrocarbon oil and a paraffin wax (numerous molecular ions in the m/z range of 200-500) by means of FD-MS. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out (Chapter 2). The method of Dinsmore and Smith [257], or a modification thereof, is normally used. Mass spectrometry (and other analytical techniques) is then used to characterise the various rubber fractions. The mass-spectral identification of numerous antioxidants (hindered phenols and aromatic amines, e.g. phenyl-/ -naphthyl-amine, 6-dodecyl-2,2,4-trimethyl-l,2-dihydroquinoline, butylated bisphenol-A, HPPD, poly-TMDQ, di-(t-octyl)diphenylamine) in rubber extracts by means of direct probe EI-MS with programmed heating, has been reported [252]. The main problem reported consisted of the numerous ions arising from hydrocarbon oil in the recipe. In older work, mass spectrometry has been used to qualitatively identify volatile AOs in sheet samples of SBR and rubber-type vulcanisates after extraction of the polymer with acetone [51,246]. [Pg.411]

Attempts have been made to incorporate functional groups into the phosphonates in zinc phosphonate structures. Zn(03P(CH2)2C02H) H20 was reacted with aromatic amines but no amide formation was observed. However, Zn(03P(CH2)2C0NHC6H5) could be synthesized directly from zinc nitrate, (2-carboxyethyl)phosphonic acid, and aniline in a one-step procedure.406... [Pg.1180]

The reduction of nitrobenzene to aniline is a major industrial process at the heart of the production of polyurethanes, and it is also often used as a marker reaction to compare activities of catalysts [1,2], It can be performed over a variety of catalysts and in a variety of solvents. As well as its main use in polymethanes, aniline is used in a wide range of industries such as dyes, agrochemicals, by further reaction and functionalisation. Reductive alkylation is one such way of functionalising aromatic amines [3, 4], The reaction usually takes place between an amine and a ketone, aldehyde or alcohol. However it is possible to reductively alkylate direct from the nitro precursor to the amine and in this way remove a processing step. In this study we examined the reductive alkylation of nitrobenzene and aniline by 1-hexanol. [Pg.85]


See other pages where Aromatic amines direct is mentioned: [Pg.454]    [Pg.47]    [Pg.454]    [Pg.47]    [Pg.1058]    [Pg.303]    [Pg.561]    [Pg.24]    [Pg.271]    [Pg.292]    [Pg.135]    [Pg.83]    [Pg.131]    [Pg.102]    [Pg.202]    [Pg.43]    [Pg.256]    [Pg.707]    [Pg.713]    [Pg.727]    [Pg.728]    [Pg.875]    [Pg.468]    [Pg.1058]    [Pg.153]    [Pg.586]    [Pg.341]    [Pg.342]    [Pg.6]    [Pg.53]    [Pg.60]    [Pg.194]    [Pg.316]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



Aromatic amination

Aromatic amines

Aromatics amination

© 2024 chempedia.info