Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arenes => aromatic compounds

Alkenes, alkynes, and arenes (aromatic compounds) all contain carbon-carbon multiple bonds. Alkenes have a double bond, alkynes have a triple bond, and cneues have alternating double and single bonds in a six-membered ring of carbon atoms. Because of their structural similarities, these compounds also have chemical similarities. [Pg.74]

Oxidation of Other Arenes. Aromatic compounds with longer alkyl side chains can be converted to ketones or carboxylic acids. All the previously discussed reagents except Cr02Cl2 usually afford the selective formation of ketones from alkyl-substituted arenes. Oxidation with Cr02Cl2 usually gives a mixture of products. These include compounds oxidized in the P position presumably formed via an alkene intermediate or as a result of the rearrangement of an intermediate epoxide.110,705... [Pg.502]

Hydrocarbons contain only hydrogen and carbon. The hydrocarbon functional groups include alkanes, alkenes, alkynes, and arenes (aromatic compounds). Simple hydrocarbons have few medicinal applications, but are the feedstock of the petrochemical industry to produce plastics, dyes, solvents, detergents, and adhesives (to name just a few). Therefore, hydrocarbons are essential to the medical field. Additionally, all hydrocarbons are flammable and, therefore, find application as fuels. For example, gasoline is a mixture of hydrocarbons. [Pg.282]

Sulfonation (Section 12 4) Sulfonic acids are formed when aromatic compounds are treated with sources of sulfur trioxide These sources can be concentrated sulfuric acid (for very reactive arenes) or solutions of sulfur trioxide in sulfuric acid (for ben zene and arenes less reactive than ben zene)... [Pg.510]

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

K. H. Saunders andR. L. M. ARen, Aromatic Dla Compounds., Edward Arnold, London, UK, 1985. [Pg.456]

Tnfluoroacetic anhydnde in a mixture with sulfuric acid is an efficient reagent for the sulfonylation of aromatic compounds [44] The reaction of benzene with this system in nitromethane at room temperature gives diphenyl sulfone in 61% yield Alkyl and alkoxy benzenes under similar conditions form the corresponding diaryl sulfones in almost quantitative yield, whereas yields of sulfones from deactivated arenes such as chlorobenzene are substantially lower [44] The same reagent (tnfluoroacetic anhydride-sulfunc acid) reacts with adamantane and its derivatives with formation of isomeric adamantanols, adamantanones, and cyclic sultones [45]... [Pg.949]

Although many of the aromatic compounds based on benzene have pleasant odors, they are usually toxic, and some are carcinogenic. Volatile aromatic hydrocarbons are highly flammable and burn with a luminous, sooty flame. The effects of molecular size (in simple arenes as well as in substituted aromatics) and of molecular symmetry (e.g., xylene isomers) are noticeable in physical properties [48, p. 212 49, p. 375 50, p. 41]. Since the hybrid bonds of benzene rings are as stable as the single bonds in alkanes, aromatic compounds can participate in chemical reactions without disrupting the ring structure. [Pg.312]

Arylamines are converted by diazotization with nitrous acid into arenediazonium salts, ArN2+ X-. The diazonio group can then be replaced by many other substituents in the Sandmeyer reaction to give a wide variety of substituted aromatic compounds. Aryl chlorides, bromides, iodides, and nitriles can be prepared from arenediazonium salts, as can arenes and phenols. In addition to their reactivity toward substitution reactions, diazonium salts undergo coupling with phenols and arylamines to give brightly colored azo dyes. [Pg.958]

Some time ago Tedder (1957) recommended a process which he called direct introduction of the diazonium group , because it replaces the steps of nitration, reduction, and diazotization of an aromatic compound by a one-pot operation with three equivalents of a nitrosating reagent in acidic solution. The first step (Scheme 2-35) is a C-nitrosation and the following steps (Scheme 2-36) are the reduction of the nitroso-arene. [Pg.36]

Our recent studies on effective bromination and oxidation using benzyltrimethylammonium tribromide (BTMA Br3), stable solid, are described. Those involve electrophilic bromination of aromatic compounds such as phenols, aromatic amines, aromatic ethers, acetanilides, arenes, and thiophene, a-bromination of arenes and acetophenones, and also bromo-addition to alkenes by the use of BTMA Br3. Furthermore, oxidation of alcohols, ethers, 1,4-benzenediols, hindered phenols, primary amines, hydrazo compounds, sulfides, and thiols, haloform reaction of methylketones, N-bromination of amides, Hofmann degradation of amides, and preparation of acylureas and carbamates by the use of BTMA Br3 are also presented. [Pg.29]

Combined effect of BTMA Br3 and ZnCl2 in acetic acid provides a new excellent bromination procedure for arenes. That is, while such reactive aromatic compounds as phenols, aromatic amines, aromatic ethers, and acetanilides have been easily brominated by BTMA Br3 in dichloromethane in the presence of methanol, the reaction of arenes, less reactive compounds, with BTMA Br3 in dichloromethane-methanol did not proceed at all, even under reflux for many hours. However, arenes could be smoothly brominated by use of this agent in acetic acid with the aid of the Lewis acid ZnCl2 (Fig. 13) (ref. 16). [Pg.36]

SIDE-CHAIN BROMINATION OF AROMATIC COMPOUNDS Benzylic bromination of arenes... [Pg.37]

The dosimeter can detect various polynuclear aromatics at the pph level after 1 hour of exposure. It has been shown that the RTF of aza-arenes can he enhanced by using mercury(II) chloride as a heavy atom (21). Also, sensitized fluorescence spectrometry with a solid organic substrate can be used to detect trace amounts of polynuclear aromatic compounds (22). [Pg.157]

Sequences of proteins containing Rieske-type clusters have been deduced from the complete operons of several dioxygenases these dioxygenases require electrons from NAD(P)H to convert aromatic compounds to cis-arene diols. The water-soluble dioxygenase systems consist of a reductase and a terminal dioxygenase many dioxygenases also contain a [2Fe-2S] ferredoxin (20). The terminal oxygenases contain a Rieske-type cluster and the ferredoxins may contain either a Rieske-type or a 4-cysteine coordinated [2Fe-2S] cluster. [Pg.89]

Rieske-type clusters are found in aromatic-ring hydroxylating dioxygenase systems (20). These enzymes catalyze the conversion of different aromatic compounds into cis-arene diols ... [Pg.149]

An /n-geometry can be ensured by appropriate substitution of the building block which carries the acid-base functionality, for instance by using 2,6-disubstituted aromatic compounds like pyridines, 2,6-disubstituted benzoic acids or other 2,6-disubstituted phenyl derivatives (see Scheme 1). The use of 2,6-disubstituted arenes is sometimes called the 1,3-xylyl trick and assures an intra-annular orientation. [Pg.64]

Arene oxides can be intermediates in the bacterial transformation of aromatic compounds and initiate rearrangements (NIH shifts) (Dalton et al. 1981 Cerniglia et al. 1984 Adriaens 1994). The formation of arene oxides may plausibly provide one mechanism for the formation of nitro-substituted products during degradation of aromatic compounds when nitrate is present in the medium. This is discussed in Chapter 2. [Pg.107]

Daly JW, DM Jerina, B Witkop (1972) Arene oxides and the NIH shift the metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28 1129-1149. [Pg.418]

Under Lewis-acid-catalyzed conditions, electron-rich arenes can be added to alkenes to generate Friedel-Crafts reaction products. This subject will be discussed in detail in Chapter 7, on aromatic compounds. However, it is interesting to note that direct arylation of styrene with benzene in aqueous CF3CO2H containing H2PtCl6 yielded 30-5% zram-PhCH CHR via the intermediate PhPt(H20)Cl4.157 Hydropheny-lation of olefins can be catalyzed by an Ir(III) complex.158... [Pg.75]


See other pages where Arenes => aromatic compounds is mentioned: [Pg.1217]    [Pg.1217]    [Pg.262]    [Pg.321]    [Pg.100]    [Pg.1286]    [Pg.941]    [Pg.148]    [Pg.32]    [Pg.103]    [Pg.106]    [Pg.494]    [Pg.261]    [Pg.84]   
See also in sourсe #XX -- [ Pg.1084 ]




SEARCH



Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds

Arenes aromaticity

Arenes compounds

Benzene Arenes Aromatic compounds

© 2024 chempedia.info