Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aqueous reactions amides

An analogous reaction of 6-chloro-2-(chloroacetamido)benzoic acid in aqueous dimethylform-amide for two hours at 90"C gives 6-chloro-4,l-benzoxazepine-2,5(l//,3/f)-dione (2b). [Pg.315]

The NHS ester end of NHS-LC-biotin reacts with amine groups in proteins and other molecules to form stable amide bond derivatives (Figure 11.4). Optimal reaction conditions are at a pH of 7-9, but the higher the pH the greater will be the hydrolysis rate of the ester. Avoid amine-containing buffers which will compete in the acylation reaction. NHS-LC-biotin is insoluble in aqueous reaction conditions and must be solubilized in organic solvent prior to the addition of a small quantity to a buffered reaction. Preparation of concentrated stock solutions may be done in DMF or DMSO. Nonaqueous reactions also may be done with this reagent for the modification of molecules insoluble in water. The molar ratio of NHS-LC-biotin to a... [Pg.513]

The oxidation of terminal olefins has been developed into a useful reaction for producing methyl ketones in good yields 6>. Again, cupric chloride and oxygen are employed to allow the palladium chloride to be used in only catalytic amounts. The method uses aqueous dimethylform-amide as solvent and a reaction temperature of 65° C. [Pg.10]

Ammonia is the most widely studied of nonaqueous inorganic solvents. Many reactions occurring in ammonia follow a close parallel to those in aqueous solution. Ammonium salts may be considered as acids, amides as bases, and ammonia complexes as solvated ions. Four reactions in liquid ammonia are listed, together with the corresponding aqueous reactions ... [Pg.234]

In deacylation, as the enzyme cleaved the phenylacyl group, phenylacetic acid was formed, which lowered the pH of the reaction medium. Base was added to maintain the starting pH. (Note Use of ammonium hydroxide led to the formation of desilylated byproducts desilylation was eliminated when bicarbonates were used.) This approach was not required in the acylation reaction. At pH above 7.5 the (R)-and (S)-amines are practically insoluble in water. Organic solvents were used to extract the free amines from the aqueous reaction medium at pH 8.0. p-Fluoro-benzoyl, 1-naphthoyl, and phenylacetyl derivatives of the racemic amine were prepared and their behavior on the chiral HPLC column was studied. Based on ease of preparation and HPLC analysis, the 1-naphthoyl derivatives (Fig. 7) were preferred. Reversed phase HPLC analysis on a Vydac-C18 analytical column used a gradient of acetonitrile (0.1% triethylamine) in water (0.05% phosphoric acid) to quantify the total amide in the reaction mixture. Chiral HPLC analysis on (S,S) Whelk-O Chiral column used isopropanol hexane (30 70) as a solvent system to separate and quantify the (R)- and (S)-enantiomers. [Pg.441]

By the action of concentrate aqueous ammonia solution upon esters. This process is spoken of as ammonolysls of the ester, by analogy with hydrolysis applied to a similar reaction with water. If the amide is soluble in water, e.g., acetamide, it may be isolated by distillation, for example ... [Pg.401]

The reaction is applicable to the preparation of amines from amides of aliphatic aromatic, aryl-aliphatic and heterocyclic acids. A further example is given in Section IV,170 in connexion with the preparation of anthranilic acid from phthal-imide. It may be mentioned that for aliphatic monoamides containing more than eight carbon atoms aqueous alkaline hypohalite gives poor yields of the amines. Good results are obtained by treatment of the amide (C > 8) in methanol with sodium methoxide and bromine, followed by hydrolysis of the resulting N-alkyl methyl carbamate ... [Pg.413]

The conversion of a carbonyl compound by ammonium polysulphide solution into an amide with the same number of carbon atoms is known as the Willgerodt reaction. The procedure has been improved by the addition of about 40 per cent, of dioxan or of pyridine to increase the mutual solubility of the ketone and aqueous ammonium polysulphide the requisite temperature is lowered to about and the yield is generally better. [Pg.923]

Indole (I) condenses with formaldehyde and dimethylamine in the presence of acetie acid (Mannich reaction see Section VI,20) largely in the 3-position to give 3 dimethylaminomethylindole or gramine (II). The latter reaets in hot aqueous ethanol with sodium cyanide to give the nitrile (III) upon boiling the reaction mixture, the nitrile undergoes hydrolysis to yield 3-indoleaeet-amide (IV), part of which is further hydrolysed to 3-indoleacetic acid (V, as sodium salt). The product is a readily separable mixture of 20 per cent, of (IV) and 80 per cent, of (V). [Pg.1012]

As an application of this nucleophilic reactivity, 2-aminothiazole was used to partially convert into amide the polymer obtained from acrylic acid, benzene, and acetic anhydride (271). An aqueous medium is reported to favor the reaction between acetic anhydride and 2-aminothiazole (272). [Pg.52]

Diamides and triamides have been obtained from the action of an aqueous saturated solution of ammonia on the corresponding ester (Scheme 18) (88). Amides can also be obtained by the Curtius (16) or Hofmann reactions (80). Thus the Curtius reaction with 2-substituted 4-thiazolecarboxylic acids gives the 4-acetamido compounds (16). [Pg.529]

When 1 2 dibromodecane was treated with potassium hydroxide m aqueous ethanol it yielded a mixture of three isomenc compounds of molecular formula CioHi9Br Each of these compounds was converted to 1 decyne on reaction with sodium amide m dimethyl sulfoxide Men tify these three compounds... [Pg.386]

The product of this reaction is an imide (Section 20 16) a diacyl derivative of an amine Either aqueous acid or aqueous base can be used to hydrolyze its two amide bonds and liberate the desired primary amine A more effective method of cleaving the two amide bonds is by acyl transfer to hydrazine... [Pg.930]

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

The HCl by-product of the amidation reaction is neutralized by also dissolving an inorganic base in the aqueous layer in interfacial polymerization. The choice of the organic solvent plays a role in determining the properties of the polymer produced, probably because of differences in solvent goodness for the resulting polymer. Since this reaction is carried out at low temperatures, the complications associated with side reactions can be kept to a minimum. [Pg.307]

Aqueous ammonia and acryUc esters give tertiary amino esters, which form the corresponding amide upon ammonolysis (34). Modem methods of molecular quantum modelling have been appHed to the reaction pathway and energetics for several nucleophiles in these Michael additions (35,36). [Pg.151]

Carboxylic acid hydiazides are prepared from aqueous hydrazine and tfie carboxylic acid, ester, amide, anhydride, or halide. The reaction usually goes poody with the free acid. Esters are generally satisfactory. Acyl halides are particularly reactive, even at room temperature, and form the diacyl derivatives (22), which easily undergo thermal dehydration to 1,3,4-oxadiazoles (23). Diesters give dihydtazides (24) and polyesters such as polyacrylates yield a polyhydrazide (25). The chemistry of carboxyhc hydrazides has been reviewed (83,84). [Pg.280]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]


See other pages where Aqueous reactions amides is mentioned: [Pg.245]    [Pg.132]    [Pg.172]    [Pg.311]    [Pg.518]    [Pg.137]    [Pg.160]    [Pg.281]    [Pg.403]    [Pg.181]    [Pg.492]    [Pg.218]    [Pg.117]    [Pg.140]    [Pg.261]    [Pg.383]    [Pg.226]    [Pg.45]    [Pg.1071]    [Pg.113]    [Pg.79]    [Pg.125]    [Pg.132]    [Pg.198]    [Pg.489]    [Pg.308]    [Pg.524]    [Pg.272]    [Pg.184]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Amidating reaction

Amidation reactions

Amide Reaction

Aqueous reactions

© 2024 chempedia.info