Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions nonaqueous

Aldehydes are more easily oxidized than alcohols which is why special reagents such as PCC and PDC (Section 15 10) have been developed for oxidizing primary alco hols to aldehydes and no further PCC and PDC are effective because they are sources of Cr(VI) but are used m nonaqueous media (dichloromethane) By keeping water out of the reaction mixture the aldehyde is not converted to its hydrate which is the nec essary intermediate that leads to the carboxylic acid... [Pg.736]

Table 8.11 pK, Values for Proton-Transfer Reactions in Nonaqueous Solvents 8.81... [Pg.828]

Potcntiomctric Titrations In Chapter 9 we noted that one method for determining the equivalence point of an acid-base titration is to follow the change in pH with a pH electrode. The potentiometric determination of equivalence points is feasible for acid-base, complexation, redox, and precipitation titrations, as well as for titrations in aqueous and nonaqueous solvents. Acid-base, complexation, and precipitation potentiometric titrations are usually monitored with an ion-selective electrode that is selective for the analyte, although an electrode that is selective for the titrant or a reaction product also can be used. A redox electrode, such as a Pt wire, and a reference electrode are used for potentiometric redox titrations. More details about potentiometric titrations are found in Chapter 9. [Pg.494]

Protonic acids dissociate to some extent in the nonaqueous reaction mixtures to produce an equilibrium concentration of protons ... [Pg.412]

For both aqueous and nonaqueous liquids, MBSL is caused by chemical reactions of high energy species formed duriag cavitation by bubble coUapse, and its principal source is most probably not blackbody radiation or electrical discharge. MBSL is predominandy a form of chemiluminescence. [Pg.260]

Tetiafluoioethylene—peifluoiopiopyl vinyl ethei copolymeis [26655-00-5] aie made in aqueous (1,2) oi nonaqueous media (3). In aqueous copolymerizations water-soluble initiators and a perfluorinated emulsifying agent are used. Molecular weight and molecular weight distribution are controlled by a chain-transfer agent. Sometimes a second phase is added to the reaction medium to improve the distribution of the vinyl ether in the poljmier (11) a buffer is also added. [Pg.374]

Nitrations can be performed in homogeneous media, using tetramethylene sulfone or nitromethane (nitroethane) as solvent. A large variety of aromatic compounds have been nitrated with nitronium salts in excellent yields in nonaqueous media. Sensitive compounds, otherwise easily hydroly2ed or oxidized by nitric acid, can be nitrated without secondary effects. Nitration of aromatic compounds is considered an irreversible reaction. However, the reversibihty of the reaction has been demonstrated in some cases, eg, 9-nitroanthracene, as well as pentamethylnitrobenzene transnitrate benzene, toluene, and mesitylene in the presence of superacids (158) (see Nitration). [Pg.561]

Typical reaction conditions are 150 to 300°C and up to 2 MPa pressure. Polyalkenyl succinic anhydrides are prepared under these conditions by the reaction of polyalkenes in a nonaqueous dispersion of maleic anhydride, mineral oil, and surfactant (33). [Pg.449]

Recovery and Purification. AH processes for the recovery and refining of maleic anhydride must deal with the efficient separation of maleic anhydride from the large amount of water produced in the reaction process. Recovery systems can be separated into two general categories aqueous- and nonaqueous-based absorption systems. Solvent-based systems have a higher recovery of maleic anhydride and are more energy efficient than water-based systems. [Pg.457]

Chemical Grafting. Polymer chains which are soluble in the suspending Hquid may be grafted to the particle surface to provide steric stabilization. The most common technique is the reaction of an organic silyl chloride or an organic titanate with surface hydroxyl groups in a nonaqueous solvent. For typical interparticle potentials and a particle diameter of 10 p.m, steric stabilization can be provided by a soluble polymer layer having a thickness of - 10 nm. This can be provided by a polymer tail with a molar mass of 10 kg/mol (25) (see Dispersants). [Pg.547]

In industrial production of acid-modified starches, a 40% slurry of normal com starch or waxy maize starch is acidified with hydrochloric or sulfuric acid at 25—55°C. Reaction time is controlled by measuring loss of viscosity and may vary from 6 to 24 hs. For product reproducibiUty, it is necessary to strictly control the type of starch, its concentration, the type of acid and its concentration, the temperature, and time of reaction. Viscosity is plotted versus time, and when the desired amount of thinning is attained the mixture is neutralized with soda ash or dilute sodium hydroxide. The acid-modified starch is then filtered and dried. If the starch is washed with a nonaqueous solvent (89), gelling time is reduced, but such drying is seldom used. Acid treatment may be used in conjunction with preparation of starch ethers (90), cationic starches, or cross-linked starches. Acid treatment of 34 different rice starches has been reported (91), as well as acidic hydrolysis of wheat and com starches followed by hydroxypropylation for the purpose of preparing thin-hoiling and nongelling adhesives (92). [Pg.344]

In addition to maintaining the circulation of the reaction Hquid, the inert gas is important in temperature control, and it prevents the formation of a separate nonaqueous phase by carrying off substantial quantities of dichloropropane in the effluent. [Pg.74]

The transformations described thus far were catalyzed by enzymes in their traditional hydrolytic mode. More recent developments in the area of enzymatic catalysis in nonaqueous media (11,16,33—35) have significantly broadened the repertoire of hydrolytic enzymes. The acyl—enzyme intermediate formed in the first step of the reaction via acylation of the enzyme s active site nucleophile can be deacylated in the absence of water by a number of... [Pg.334]

Resolution of racemic alcohols by acylation (Table 6) is as popular as that by hydrolysis. Because of the simplicity of reactions ia nonaqueous media, acylation routes are often preferred. As ia hydrolytic reactions, selectivity of esterification may depend on the stmcture of the acylatiag agent. Whereas Candida glindracea Upase-catalyzed acylation of racemic-cx-methylhenzyl alcohol [98-85-1] (59) with butyric acid has an enantiomeric value E of 20, acylation with dodecanoic acid increases the E value to 46 (16). Not only acids but also anhydrides are used as acylatiag agents. Pseudomonasfl. Upase (PFL), for example, catalyzed acylation of a-phenethanol [98-85-1] (59) with acetic anhydride ia 42% yield and 92% selectivity (74). [Pg.339]

Perhaps the biggest impact on the practical utilization of enzymes has been the development of nonaqueous enzymology (11,16,33,35). The use of enzymes in nonaqueous media gready expands the scope of suitable transformations, simplifies thek use, and enhances stabiUty. It also provides an easy means of regulation of the substrate specificity and regio- and enantioselectivity of enzymes by changing the reaction medium. [Pg.350]

The main supramolecular self-assembled species involved in analytical chemistry are micelles (direct and reversed), microemulsions (oil/water and water/oil), liposomes, and vesicles, Langmuir-Blodgett films composed of diphilic surfactant molecules or ions. They can form in aqueous, nonaqueous liquid media and on the surface. The other species involved in supramolecular analytical chemistry are molecules-receptors such as calixarenes, cyclodextrins, cyclophanes, cyclopeptides, crown ethers etc. Furthermore, new supramolecular host-guest systems arise due to analytical reaction or process. [Pg.417]

Silyl esters are stable to nonaqueous reaction conditions. A trimethylsilyl ester is cleaved by refluxing in alcohol the more substituted and therefore more stable silyl esters are cleaved by mildly acidic or basic hydrolysis. [Pg.261]

Numerous tetrahedral halogeno complexes [T1" X4] (X = Cl, Br, I) have been prepared by reaction of quaternary ammonium or arsonium halides on TIX3 in nonaqueous solution, and octahedral complexes TI "X< ] (X = Cl, Br) are also well established. The binuclear complex Cs3[Tl2"Cl<)J is an important structural type which features two TlCls octahedra sharing a common face of 3 bridging Cl atoms (Fig. 7.9) the same binuclear complex structure is retained when Tl " is replaced by Ti ", V ", Cr " and Fe " and also in K3W2CIS and CssBiily, etc. [Pg.240]


See other pages where Reactions nonaqueous is mentioned: [Pg.171]    [Pg.318]    [Pg.2828]    [Pg.318]    [Pg.171]    [Pg.318]    [Pg.2828]    [Pg.318]    [Pg.2952]    [Pg.303]    [Pg.504]    [Pg.664]    [Pg.374]    [Pg.97]    [Pg.274]    [Pg.6]    [Pg.228]    [Pg.255]    [Pg.32]    [Pg.76]    [Pg.507]    [Pg.161]    [Pg.482]    [Pg.397]    [Pg.386]    [Pg.474]    [Pg.496]    [Pg.335]    [Pg.293]    [Pg.337]    [Pg.700]    [Pg.727]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Nonaqueous

© 2024 chempedia.info