Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications experimental description

Despite the great scope for rate studies in the fast reaction field, these still constitute a small fraction of published kinetic studies. In part this is because fast reaction kinetics is still in some respects a specialist s field, requiring equipment (whether commercially purchased or locally fabricated) that is not commonly found in the chemical laboratory s stock of instrumentation. This chapter treats the field at a nonspecialist s level, which is adequate to allow the experimentalist to judge if a certain technique is applicable to a particular problem. Reviews and book-length treatments are available these should be consulted for more detailed theoretical and experimental descriptions. [Pg.133]

The rqjroducibility of polymer film formation is greatly improved by the spin coating technique where the polymer solution is applied by a microsyringe onto the center of a rapidly rotated disk electrode Rather thick films can be produced by repeated application of small volumes of stock solution. A thorough discussion and detailed experimental description of a reliable spin coating procedure was given recently... [Pg.53]

Theoretical knowledge is available for a detailed description of the biofilm processes (Characklis, 1990 Gujer and Wanner, 1990). However, a fundamental requirement to establish applicable experimental procedures for determination of components and process parameters delimits the use of details. A simple description of the biofilm processes in terms of a surface flux model according to the description in Section 3.2.2 is selected. [Pg.107]

This comprehensive laboratory text includes 48 experiments with background theoretical information, complete experimental descriptions, safety recommendations, and computer applications. Updated chapters are provided regarding the collection and analysis of data and the use of spreadsheets and other scientific software. Supplementary instructor information regarding necessary supplies, equipment, and procedures is provided in an integrated manner in the text. [Pg.746]

The purpose of most practical work is to observe and measure a particular characteristic of a chemical system. However, it would be extremely rare if the same value was obtained every time the characteristic was measured, or with every experimental subject. More commonly, such measurements will show variability, due to measurement error and sampling variation. Such variability can be displayed as a frequency distribution (e.g. Fig. 37.3), where the y axis shows the number of times (frequency,/) each particular value of the measured variable (T) has been obtained. Descriptive (or summary) statistics quantify aspects of the frequency distribution of a sample (Box 40.1). You can use them to condense a large data set, for presentation in figures or tables. An additional application of descriptive statistics is to provide estimates of the true values of the underlying frequency distribution of the population being sampled, allowing the significance and precision of the experimental observations to be assessed (p. 272). [Pg.264]

This chapter describes the application and development of trace gas detection based on PTR-MS within life sciences. The chapter begins with a short overview about the ion chemistry that is used in these mass spectrometer systems to sensitively measure trace gases. The overview is followed by the experimental description of the system, including practical aspects such as how to perform a calibration or the use of natural isotopic ratios to gain some information about the identity of the detected compounds. The main part of the chapter deals with applications and measurements performed with PTR-MS to study processes inside plants, fruit, bacteria, and insects interactions between plants and pathogens and also as a tool for human health research. [Pg.1258]

In this chapter, complex dynamic properties of the four ILs will be discussed based on the experimental data such as Dtfsa, Dcation, rc(cation), bulk viscosity, ionic conductivity and density in the temperature range from 253 to 353 K or above freezing, while the data of the viscosity and density were measured between 283 and 353 K. Since ILs are in wide variety of structures and rich in properties and applications, the description in this chapter is limited for the four ILs. [Pg.210]

Judging from our present knowledge, such a description is far from the whole story. The article of Benderskii and Goldanskii [1992] addressed mostly the vast amount of experimental data accumulated thus far. On the other hand, the major applications of QTST involved gas-phase chemical reactions, where quantum effects were not dominant. All this implies that there is a gap between the possibilities offered by modern quantum theory and the problems of low-temperature chemistry, which apparently are the natural arena for testing this theory. This prompted us to propose a new look at this field, and to consistently describe the theoretical approaches which are adequate even at T = 0. [Pg.7]

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to emission of one or more of a variety of secondary particles such as electrons, photons, positive and secondary ions, and neutrals. Because the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary-secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application, some because of the restricted or specialized nature of the information obtained and others because of difficult experimental requirements. In this publication, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are given of the many others the use of which is less common but which - in appropriate circumstances, particularly in basic research - can provide vital information. [Pg.2]

Objective Evaluation of Color. In recent years a method has been devised and internationally adopted (International Commission on Illumination, I.C.I.) that makes possible objective specification of color in terms of equivalent stimuli. It provides a common language for description of the color of an object illuminated by a standard illuminant and viewed by a standard observer (H). Reflectance spectro-photometric curves, such as those described above, provide the necessary data. The results are expressed in one of two systems the tristimulus system in which the equivalent stimulus is a mixture of three standard primaries, or the heterogeneous-homogeneous system in which the equivalent stimulus is a mixture of light from a standard heterogeneous illuminant and a pure spectrum color (dominant wave-length-purity system). These systems provide a means of expressing the objective time-constant spectrophotometric results in numerical form, more suitable for tabulation and correlation studies. In the application to food work, the necessary experimental data have been obtained with spectrophotometers or certain photoelectric colorimeters. [Pg.7]


See other pages where Applications experimental description is mentioned: [Pg.311]    [Pg.161]    [Pg.313]    [Pg.76]    [Pg.307]    [Pg.161]    [Pg.185]    [Pg.252]    [Pg.55]    [Pg.130]    [Pg.616]    [Pg.279]    [Pg.1265]    [Pg.1500]    [Pg.253]    [Pg.442]    [Pg.100]    [Pg.437]    [Pg.439]    [Pg.11]    [Pg.385]    [Pg.445]   
See also in sourсe #XX -- [ Pg.333 ]




SEARCH



Applications description

Experimental description

© 2024 chempedia.info