Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anti-Stokes Raman effect

It was predicted in 1923 by Smekal and shown experimentally in 1928 by Raman and Krishnan that a small amount of radiation scattered by a gas, liquid or solid is of increased or decreased wavelength (or wavenumber). This is called the Raman effect and the scattered radiation with decreased or increased wavenumber is referred to as Stokes or anti-Stokes Raman scattering, respectively. [Pg.122]

The present study demonstrates that the analytic calculation of hyperpolarizability dispersion coefficients provides an efficient alternative to the pointwise calculation of dispersion curves. The dispersion coefficients provide additional insight into non-linear optical properties and are transferable between the various optical processes, also to processes not investigated here as for example the ac-Kerr effect or coherent anti-Stokes Raman scattering (CARS), which depend on two independent laser frequencies and would be expensive to study with calculations ex-plictly frequency-dependent calculations. [Pg.142]

In order to extend the range of 2laser excitation, both CARS (Coherent Anti-Stokes Raman Scattering) and CSRS (Coherent Stokes Raman Scattering) are used. In both cases <03 = 2003 -U2 In the CARS mode 0)3 > wj > (03 in the CSRS mode <02 > (1)3. One-photon resonance effects are the same in both cases as described later. Phase matching is also the same in both cases with 3 = 2 ... [Pg.200]

Liu, C., Huang, Z., Lu, E. Zheng, W., Hutmacher, D. W., and Sheppard, C. 2006. Near-field effects on coherent anti-Stokes Raman scattering microscopy imaging. Opt. Express 15 4118-31. [Pg.237]

Before melting and for some time after only the band at 625 cm of the AA [C4CiIm]+ cation was observed in the 600-630 cm i region. Gradually 603 cm i band due to the GA conformer became stronger. After about 10 min the AA/GA intensity ratio became constant. The interpretation [50] is that the rotational isomers do not interconvert momentarily at the molecular level. Most probably it involves a conversion of a larger local structure as a whole. The existence of such local structures of different rotamers has been found by optical heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES) [82], Coherent anti-Stokes Raman scattering (CARS) [83],... [Pg.334]

Table II Space- and Time-Resolved Measurements from Inelastic Light Scattering. All methods are suitable for nonequilibrium conditions. Here, RS refers to Raman scattering, CARS to coherent anti-Stokes Raman spectroscopy, and RIKES to Raman-induced Kerr effect. Table II Space- and Time-Resolved Measurements from Inelastic Light Scattering. All methods are suitable for nonequilibrium conditions. Here, RS refers to Raman scattering, CARS to coherent anti-Stokes Raman spectroscopy, and RIKES to Raman-induced Kerr effect.
Reduction or elimination of fluorescence High resolution High throughput Good frequency accuracy Collect Stokes and anti-Stokes Raman simultaneously Both IR and Raman capabilities on same instrument. Absorptions in the NIR Black-body emissions in IR Lower scattering intensity due to v4 effect Difficult to detect low concentrations of impurities... [Pg.112]

A CCD Raman spectrometer coupled with a 10-mW He-Ne laser has been used to eliminate fluorescence because the long-wavelength excitation by the He-Ne laser is not as likely to cause fluorescent transitions (71). Because of its directional property, coherent anti-Stokes Raman scattering (CARS) is also effective in avoiding fluorescence interference (see CARS in Section 3.9). [Pg.137]

Here, E is the strength of the applied electric field (laser beam), a the polarizability and / and y the first and second hyper-polarizabilities, respectively. In the case of conventional Raman spectroscopy with CW lasers (E, 104 V cm-1), the contributions of the / and y terms to P are insignificant since a fi y. Their contributions become significant, however, when the sample is irradiated with extremely strong laser pulses ( 109 V cm-1) created by Q-switched ruby or Nd-YAG lasers (10-100 MW peak power). These giant pulses lead to novel spectroscopic phenomena such as the hyper-Raman effect, stimulated Raman effect, inverse Raman effect, coherent anti-Stokes Raman scattering (CARS), and photoacoustic Raman spectroscopy (PARS). Figure 3-40 shows transition schemes involved in each type of nonlinear Raman spectroscopy. (See Refs. 104-110.)... [Pg.194]

Hofmann M, Ztirl R, Graener H. Polarization effects in time resolved incoherent anti-Stokes Raman spectroscopy. J Chem Phys 1996 105 6141-6146. [Pg.598]

Nonlinear vibrational spectroscopy provides accessibility to a range of vibrational information that is hardly obtainable from conventional linear spectroscopy. Recent progress in the pulsed laser technology has made the nonlinear Raman effect a widely applicable analytical method. In this chapter, two types of nonlinear Raman techniques, hyper-Raman scattering (HRS) spectroscopy and time-frequency two-dimensional broadband coherent anti-Stokes Raman scattering (2D-CARS) spectroscopy, are applied for characterizing carbon nanomaterials. The former is used as an alternative for IR spectroscopy. The latter is useful for studying dynamics of nanomaterials. [Pg.99]

The experimental setup for the broadband CARS is rather simple because only two pulses are needed for three-color CARS emission, as shown in Fig. 5.4a a broadband first pulse impulsively promotes molecules to vibrationally excited states through a two-photon Raman process, and a delayed narrowband second pulse induces anti-Stokes Raman emission from coherent superpositions to the ground state [29]. By changing the delay time for the second pulse, therefore, one can expect to probe dynamical behaviors of multiple RS-active modes. Such a two-dimensional observation in the time-frequency domains should be effective for detailed analysis of nanomaterials. [Pg.104]

Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Appl Phys Lett 84 1768 Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging. Phys Rev Lett 92 220801 Tanaka S, Maeda Y, Cai L, Tabata H, Kawai T (2001) Application of tip-enhanced microscopy for nonlinear Raman spectroscopy. Jpn J Appl Phys 40 4217 Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys Rev B 69 155418 Yano T, Verma P, Saito Y, Ichimura T, Kawata S (2009) Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres. Nature Photon 3 473 Yano T, Inouye Y, Kawata S (2006) Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett 6 1269 Downes A, Salter D, Elfick A (2006) Heating effects in tip-enhanced optical microscopy. Opt Exp 14 5216... [Pg.475]

In the case of non-degenerate frequencies, the nonlocal third-order effects may give rise to chiral pump-probe spectroscopies. The only observation of a coherent Raman optical activity process to date is also due to a third-order pseudoscalar. Spiegel and Schneider have observed Raman optical activity in coherent anti-Stokes Raman scattering in a liquid of (-l-)-trans-pinane and report chiral signals that are 10 of the conventional electric-dipolar CARS intensity [23],... [Pg.366]


See other pages where Anti-Stokes Raman effect is mentioned: [Pg.3164]    [Pg.3164]    [Pg.1273]    [Pg.318]    [Pg.431]    [Pg.164]    [Pg.28]    [Pg.239]    [Pg.31]    [Pg.52]    [Pg.72]    [Pg.244]    [Pg.309]    [Pg.117]    [Pg.3]    [Pg.424]    [Pg.179]    [Pg.419]    [Pg.98]    [Pg.167]    [Pg.57]    [Pg.318]    [Pg.5]    [Pg.6]    [Pg.229]    [Pg.627]    [Pg.103]    [Pg.105]    [Pg.79]    [Pg.66]    [Pg.488]    [Pg.302]    [Pg.92]    [Pg.4]   
See also in sourсe #XX -- [ Pg.57 , Pg.232 ]




SEARCH



Anti-stokes

Raman anti-Stokes

Raman effect

Raman effect anti-Stokes wave

Stokes Raman effect

© 2024 chempedia.info