Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorescence avoidance

Sensitive Higher SNR Laser X - 200-800 nm (limited by response CCD) Lower laser power No moving parts (often) Excellent frequency precision Higher AS2 Always >1064 nm Better fluorescence avoidance Good libraries... [Pg.79]

CAHRS and CSHRS) [145, 146 and 147]. These 6WM spectroscopies depend on (Im for HRS) and obey the tlnee-photon selection rules. Their signals are always to the blue of the incident beam(s), thus avoiding fluorescence problems. The selection ndes allow one to probe, with optical frequencies, the usual IR spectrum (one photon), not the conventional Raman active vibrations (two photon), but also new vibrations that are synnnetry forbidden in both IR and conventional Raman methods. [Pg.1214]

Chloride ion is known to quench the intensity of quinine s fluorescent emission. For example, the presence of 100 ppm NaCI (61 ppm Ch) gives an emission intensity that is only 83% of that without chloride, whereas the presence of 1000 ppm NaCI (610 ppm Ch) gives a fluorescent emission that is only 29% as intense. The concentration of chloride in urine typically ranges from 4600 to 6700 ppm Ch. Flow is an interference from chloride avoided in this procedure ... [Pg.431]

In a 2-1. round-bottom flask, fitted with an efficient reflux condenser, is placed 500 g. (5.7 moles) of ethyl acetate (Note i), and 50 g. (2.2 moles) of clean sodium wire or finely sliced sodium (Note 2) is added. The reaction is at first quite slow, and must be started by warming on a water bath (Note 3). After the reaction is once started it proceeds vigorously and cooling is then necessary in order to avoid loss of material through the condenser. When the rapid reaction slows down, the reaction mixture is heated on a water bath until the sodium has completely dissolved. This usually requires about one and one-half hours. At this stage the reaction mixture should be a clear red liquid with a green fluorescence. [Pg.36]

It would be preferable to incorporate both fluorescent and electron transport properties in the same material so as to dispense entirely with the need for electron-transport layers in LEDs. Raising the affinity of the polymer facilitates the use of metal electrodes other than calcium, thus avoiding the need to encapsulate the cathode. It has been shown computationally [76] that the presence of a cyano substituent on the aromatic ring or on the vinylene portion of PPV lowers both the HOMO and LUMO of the material. The barrier for electron injection in the material is lowered considerably as a result. However, the Wessling route is incompatible with strongly electron-withdrawing substituents, and an alternative synthetic route to this class of materials must be employed. The Knoevenagel condensation... [Pg.20]

Fluorescent small molecules are used as dopants in either electron- or hole-transporting binders. These emitters are selected for their high photoluminescent quantum efficiency and for the color of their emission. Typical examples include perylene and its derivatives 44], quinacridones [45, penlaphenylcyclopenlcne [46], dicyanomethylene pyrans [47, 48], and rubrene [3(3, 49]. The emissive dopant is chosen to have a lower excited state energy than the host, such that if an exciton forms on a host molecule it will spontaneously transfer to the dopant. Relatively small concentrations of dopant are used, typically in the order of 1%, in order to avoid concentration quenching of their luminescence. [Pg.535]

We have also investigated other oxalate esters as a potential means to improve the efficiency. The most commonly used oxalates are the 2,4,6-trichlorophenyl (TCPO) and 2,4-dinitrophenyl (DNPO) oxalates. Both have severe drawbacks namely, their low solubility in aqueous and mixed aqueous solvents and quenching of the acceptor fluorescence. To achieve better solubility and avoid the quenching features of the esters and their phenolic products, we turned to difluorophenyl oxalate (DFPO) derivatives 5 and 6 (Figure 14). Both the 2,4- and the 2,6-difluoro esters were readily synthesized and were shown to be active precursors to DPA chemiluminescence. In fact, the overall efficiency of the 2,6-difluorophenyl oxalate 5 is higher than for TCPO in the chemical excitation of DPA under the conditions outlined earlier. Several other symmetrical and unsymmet-rical esters were also synthesized, but all were less efficient than either TCPO or 2,6-DFPO (Figure 14). [Pg.148]

Brief exposure to nitrous fumes (up to 3 min) leaves the fluorescent power of the acid-instable fluorescence indicator 254. incorporated into most TLC layers, largely unaffected, so that the nitroaromatics so formed can be detected as dark zones on a green fluorescent background [1]. For purposes of in situ quantitation it is recommended that the fluorescence indicator be destroyed by 10 min exposure to nitrous fumes in order to avoid difficulties in the subsequent evaluation [1]. [Pg.172]

The natural fluorescence of ergot alkaloids is considerably augmented by the reagent [1]. Heating for longer than 3 min or to more than 80 °C leads to a reduction in fluorescence intensity and, hence, should be avoided [3]. [Pg.182]

All preparative PLC precoated layers have glass plates as support. They are offered by a variety of manufacturers with or without fluorescent indicators and different binders. The layer thicknesses range uniformly between 0.5 and 2 mm or exhibit a gradient. Furthermore, in some cases the precoated silica gel plates are prescored to avoid cross-contamination from track to track. [Pg.43]


See other pages where Fluorescence avoidance is mentioned: [Pg.273]    [Pg.889]    [Pg.273]    [Pg.889]    [Pg.1207]    [Pg.2964]    [Pg.443]    [Pg.286]    [Pg.213]    [Pg.274]    [Pg.85]    [Pg.434]    [Pg.80]    [Pg.257]    [Pg.137]    [Pg.383]    [Pg.56]    [Pg.179]    [Pg.326]    [Pg.253]    [Pg.188]    [Pg.26]    [Pg.207]    [Pg.571]    [Pg.49]    [Pg.58]    [Pg.173]    [Pg.267]    [Pg.870]    [Pg.21]    [Pg.42]    [Pg.251]    [Pg.535]    [Pg.65]    [Pg.166]    [Pg.129]    [Pg.508]    [Pg.9]   
See also in sourсe #XX -- [ Pg.78 , Pg.79 ]

See also in sourсe #XX -- [ Pg.5 , Pg.9 , Pg.55 , Pg.134 , Pg.179 ]




SEARCH



© 2024 chempedia.info