Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic metal oxidation

Another interesting phenomenon is producing luminescence from electrochemical reactions. This can be achieved by doping crystalline metal oxides and related materials or anodic metal oxide layers (Meulenkamo et al., 1993) or depositing organic molecules onto nanostructured porous materials such silicon (Martin et al., 2006). [Pg.256]

Most metals occur naturally in their oxide or sulfide forms. The process of metal refining converts these ores into pure metals. Thermodynamically, a metal will return spontaneously to its original oxide form. Metal oxidation can occur at high temperatures, by direct reaction with O2, or at a moderate temperature by reaction with water, O2, and/or H+. The latter oxidation, commonly referred to as wet corrosion, has as its basis the combination of electrochemical cathodic reduction and anodic metal oxidation reactions into a corrosion cell. Thus, many corrosion processes are... [Pg.1805]

In the case of metallic corrosion, the local cell model assumes that corrosion occurs as a combination of anodic metal oxidation and cathodic oxidant reduction. The anodic metal oxidation (dissolution) is a process of metal ion transfer across the metal-solution interface, in which the metal ions transfer from the metallic bonding state into the hydrated state in solution. We note that, before they transfer into the solution, the metal ions are ionized forming surface metal ions free from the metallic bonding electrons. The metal ion transfer is written as follows ... [Pg.533]

Besides the graphite anode, metal oxides such as magnetite and lead dioxide were examined as chlorine-evolving anodes. However, these were found to be unstable when anodically polarized in chloride media. [Pg.266]

Corrosion is defined as the spontaneous degradation of a reactive material by an aggressive environment and, at least in the case of metals in condensed media, it occurs by the simultaneous occurrence of at least one anodic (metal oxidation) and one cathodic (e.g. reduction of dissolved oxygen) reaction. Because these partial reactions are charge-transfer processes, corrosion phenomena are essentially electrochemical in nature. Accordingly, it is not surprising that electrochanical techniques have been used extensively in the study of corrosion phenomena, both to determine the corrosion rate and to define degradation mechanisms. [Pg.343]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

In botli cases, tire anodic reaction occurs by oxidation at tire metal/oxide interface ... [Pg.2723]

The passive state of a metal can, under certain circumstances, be prone to localized instabilities. Most investigated is the case of localized dissolution events on oxide-passivated surfaces [51, 106, 107, 108, 109, 110, ill, 112, 113, 114, 115, 116, 117 and 118]. The essence of localized corrosion is that distinct anodic sites on the surface can be identified where the metal oxidation reaction (e.g. Fe —> Fe + 2e ) dominates, surrounded by a cathodic zone where the reduction reaction takes place (e.g. 2Fi + 2e —> Fi2). The result is the fonnation of an active pit in the metal, an example of which is illustrated in figure C2.8.6(a) and (b). [Pg.2726]

This is essentially a corrosion reaction involving anodic metal dissolution where the conjugate reaction is the hydrogen (qv) evolution process. Hence, the rate depends on temperature, concentration of acid, inhibiting agents, nature of the surface oxide film, etc. Unless the metal chloride is insoluble in aqueous solution eg, Ag or Hg ", the reaction products are removed from the metal or alloy surface by dissolution. The extent of removal is controUed by the local hydrodynamic conditions. [Pg.444]

Commercial metal anodes for the chlorine industry came about after the late 1960s when a series of worldwide patents were awarded (6—8). These were based not on the use of the platinum-group metals (qv) themselves, but on coatings comprised of platinum-group metal oxides or a mixture of these oxides with valve metal oxides, such as titanium oxide (see Platinum-GROUP metals, compounds Titanium compounds). In the case of chlor-alkaH production, the platinum-group metal oxides that proved most appropriate for use as coatings on anodes were those of mthenium and iridium. [Pg.119]

Many competitive programs to perfect a metallic anode for chlorine arose. In one, Dow Chemical concentrated on a coating based on cobalt oxide rather than precious metal oxides. This technology was patented (9,10) and developed to the semicommercial state, but the operating characteristics of the cobalt oxide coatings proved inferior to those of the platinum-group metal oxide. [Pg.119]

Cathodic Protection Systems. Metal anodes using either platinum [7440-06 ] metal or precious metal oxide coatings on titanium, niobium [7440-03-17, or tantalum [7440-25-7] substrates are extensively used for impressed current cathodic protection systems. A prime appHcation is the use of platinum-coated titanium anodes for protection of the hulls of marine vessels. The controUed feature of these systems has created an attractive alternative... [Pg.119]

Metal anodes using platinum and precious metal oxide coatings are also incorporated into a variety of designs of impressed current protection for pipeline and deep weU appHcations, as weU as for protection of condenser water boxes in power generating stations (see Pipelines Power generation). [Pg.120]

According to Faraday s law, one Faraday (26.80 Ah) should deposit one gram equivalent (8.994 g) of aluminum. In practice only 85—95% of this amount is obtained. Loss of Faraday efficiency is caused mainly by reduced species ( Al, Na, or A1F) dissolving or dispersing in the electrolyte (bath) at the cathode and being transported toward the anode where these species are reoxidized by carbon dioxide forming carbon monoxide and metal oxide, which then dissolves in the electrolyte. Certain bath additives, particularly aluminum fluoride, lower the content of reduced species in the electrolyte and thereby improve current efficiency. [Pg.97]

A dimensionally stable anode consisting of an electrically conducting ceramic substrate coated with a noble metal oxide has been developed (55). Iridium oxide, for example, resists anode wear experienced ia the Downs and similar electrolytic cells (see Metal anodes). [Pg.167]

Anode Applications. Graphite has been used as the primary material for electrolysis of brine (aqueous) and fused-salt electrolytes, both as anode and cathode. Technological advances, however, have resulted in a dimensionally stable anode (DSA) consisting of precious metal oxides deposited on a titanium substrate that has replaced graphite as the primary anode (38—41) (see Alkali and chlorine products). [Pg.521]

The effect of radiation-source temperature on the low-temperature absorptivity of a number of additional materials is presented in Fig. 5-12. It will be noted that polished aluminum (cui ve 15) and anodized (surface-oxidized) aluminum (cui ve 13), representative of metals and nonmetals respectively, respond oppositely to a change in the temperature of the radiation source. The absorptance of surfaces for solar... [Pg.572]

Impressed current anodes of the previously described substrate materials always have a much higher consumption rate, even at moderately low anode current densities. If long life at high anode current densities is to be achieved, one must resort to anodes whose surfaces consist of anodically stable noble metals, mostly platinum, more seldom iridium or metal oxide films (see Table 7-3). [Pg.213]

Figure 19-1 shows the experimental setup with the position of the steel test pieces and the anodes. The anodes were oxide-coated titanium wires and polymer cable anodes (see Sections 7.2.3 and 7.2.4). The mixed-metal experimental details are given in Table 19-1. The experiments were carried out galvanostatically with reference electrodes equipped to measure the potential once a day. Thus, contamination of the concrete by the electrolytes of the reference electrodes was excluded. The potentials of the protected steel test pieces are shown in Table 19-1. The potentials of the anodes were between U(2u-cuso4 = -1-15 and -1.35 V. [Pg.429]

Anode 1 = plastic cable anode anode 2 = mixed metal oxide-titanium. [Pg.430]

The impressed current method with metal oxide-coated niobium anodes is usually employed for internal protection (see Section 7.2.3). In smaller tanks, galvanic anodes of zinc can also be used. Potential control should be provided to avoid unacceptably negative potentials. Pure zinc electrodes serve as monitoring and control electrodes in exposed areas which have to be anodically cleaned in the course of operation. Ag-AgCl electrodes are used to check these reference electrodes. [Pg.468]


See other pages where Anodic metal oxidation is mentioned: [Pg.268]    [Pg.131]    [Pg.131]    [Pg.104]    [Pg.153]    [Pg.556]    [Pg.102]    [Pg.655]    [Pg.268]    [Pg.131]    [Pg.131]    [Pg.104]    [Pg.153]    [Pg.556]    [Pg.102]    [Pg.655]    [Pg.2714]    [Pg.2726]    [Pg.385]    [Pg.486]    [Pg.224]    [Pg.224]    [Pg.330]    [Pg.527]    [Pg.546]    [Pg.74]    [Pg.146]    [Pg.175]    [Pg.179]    [Pg.208]    [Pg.220]    [Pg.305]    [Pg.458]   
See also in sourсe #XX -- [ Pg.533 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic metals

Anodic oxidation

Anodic oxides

Metal anodes

Metal oxide anodes

Metallic anodes

© 2024 chempedia.info