Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anode defined

Figure 9.6 Cross-section of an El source. The filament and anode define the electron beam. The ions are formed in the space above the two repeUers (the solid color blocks). A positive charge on the repellers together with a negative potential on the focus electrodes, cause positive ions to be accelerated upward in the diagram, into the mass analyzer. (Modified from Ewing, used with permission.)... Figure 9.6 Cross-section of an El source. The filament and anode define the electron beam. The ions are formed in the space above the two repeUers (the solid color blocks). A positive charge on the repellers together with a negative potential on the focus electrodes, cause positive ions to be accelerated upward in the diagram, into the mass analyzer. (Modified from Ewing, used with permission.)...
For example, suppose we connect the standard hydrogen electrode to a Cu electrode immersed in a 1 M Cu solution. The measured cell potential for this cell is -0.34 V. The anode (defined as Cu/Cu ) is at a more positive voltage (lower potential energy) than the cathode (the SHE). Therefore, electrons will not spontaneously flow from the anode to the cathode. We can diagram the potential energy and the voltage of this cell as follows ... [Pg.872]

Also, by convention, potentiometric electrochemical cells are defined such that the indicator electrode is the cathode (right half-cell) and the reference electrode is the anode (left half-cell). [Pg.467]

Equations 11.19-11.21 are defined for a potentiometric electrochemical cell in which the pH electrode is the cathode. In this case an increase in pH decreases the cell potential. Many pH meters are designed with the pH electrode as the anode so that an increase in pH increases the cell potential. The operational definition of pH then becomes... [Pg.491]

Many factors other than current influence the rate of machining. These involve electrolyte type, rate of electrolyte flow, and other process conditions. For example, nickel machines at 100% current efficiency, defined as the percentage ratio of the experimental to theoretical rates of metal removal, at low current densities, eg, 25 A/cm. If the current density is increased to 250 A/cm the efficiency is reduced typically to 85—90%, by the onset of other reactions at the anode. Oxygen gas evolution becomes increasingly preferred as the current density is increased. [Pg.308]

Because of limited commercial experience with anode coatings in membrane cells, commercial lifetimes have yet to be defined. Expected lifetime is 5—8 years. In some cases as of this writing (ca 1995), 10-years performance has already been achieved. Actual lifetime is dictated by the membrane replacement schedule, cell design, the level of oxygen in the chlorine gas, and by the current density at which the anode is operated. [Pg.122]

Fig. 9. Voltammograms demonstrating a potentiometric titration using dual-polarized electrodes, where the dashed lines indicate the anodic and equal-but-opposite cathodic currents that must be carded by the two opposing electrodes during the titration. Terms are defined in text. Fig. 9. Voltammograms demonstrating a potentiometric titration using dual-polarized electrodes, where the dashed lines indicate the anodic and equal-but-opposite cathodic currents that must be carded by the two opposing electrodes during the titration. Terms are defined in text.
Since/(a) is a monotonically increasing function, the protection region, a, increases with the polarization parameter, k. As an example, a symmetrical coplanar electrode arrangement with equally large anodic and cathodic polarization resistances is considered. Here/(jc) is defined as [19] ... [Pg.559]

For detection of secondary ions a laterally resolving detector is necessary. In the first step a channel plate for amplification is used secondary electrons from the output of this device are accelerated either to a fluorescent screen or to a resistive anode. If a fluorescent screen is used the image is picked up by a CCD camera and summed frame by frame by use of a computer. The principal advantage of this system is unlimited secondary ion intensities, but compared with the digital detection of the resistive anode encoder the lateral and intensity linearity is not as well-defined. [Pg.118]

It is apparent (Fig. 1.21) that at potentials removed from the equilibrium potential see equation 1.30) the rate of charge transfer of (a) silver cations from the metal to the solution (anodic reaction), (b) silver aquo cations from the solution to the metal (cathodic reaction) and (c) electrons through the metallic circuit from anode to cathode, are equal, so that any one may be used to evaluate the rates of the others. The rate is most conveniently determined from the rate of transfer of electrons in the metallic circuit (the current 1) by means of an ammeter, and if / is maintained constant it can eilso be used to eveduate the extent. A more precise method of determining the quantity of charge transferred is the coulometer, in which the extent of a single well-defined reaction is determined accurately, e.g. by the quantity of metal electrodeposited, by the volume of gas evolved, etc. The reaction Ag (aq.) -t- e = Ag is utilised in the silver coulometer, and provides one of the most accurate methods of determining the extent of charge transfer. [Pg.80]

A typical Evans diagrams for the corrosion of a single metal is illustrated in Fig. 1.26a (compare with Fig. 1.23 for two separable electrodes), and it can be seen that the E -I and E -I curves are drawn as straight lines that intersect at a point that defines and (it is assumed that the resistance for the solution is negligible). E can of course be determined by means of a reference electrode, but since the anodic and cathodic sites are inseparable direct determination of /co by means of an ammeter is not... [Pg.93]

Figure 1.62b shows the result of raising the potential of a corroding metal. As the potential is raised above B, the current/potential relationship is defined by the line BD, the continuation of the local cell anodic polarisation curve, AB. The corrosion rate of an anodically polarised metal can very seldom be related quantitatively by Faraday s law to the external current flowing, Instead, the measured corrosion rate will usually exceed... [Pg.214]

An interesting illustration of the effect that quite small alloying additions may sometimes have on anodic behaviour is seen in Fig. 4.27 from a comparison of the Ni-30Cu alloy Alloy 400 with its age-hardening variant Alloy K500, which contains 2-7% A1 and 0-6% Ti. The presence of these elements in the latter alloy is responsible for a well-defined passive region, whereas the former alloy shows only a slight tendency to passivate in acidic... [Pg.774]

For these reasons alloying elements appear in all the commercial anodes, and very careful quality control is required to keep disadvantageous tramp elements (notably iron and copper) below defined threshold levels. Many anode failures can be attributed to poor production quality control. A guide to minimum quality standards has been produced ... [Pg.119]

The fundamental requirements of a sacrificial anode are to impart sufficient cathodic protection to a structure economically and predictably over a defined period, and to eliminate, or reduce to an acceptable level, corrosion that would otherwise take place. [Pg.137]

The application of sacrificial anodes for the protection of structures requires the development of suitable anode materials for the exposure environment. Screening tests enable the rapid selection of materials which show potential as candidates for the given application. These tests may typically use a single parameter (e.g. operating potential at a defined constant current density) as a pass/fail criterion and are normally of short duration (usually hours) with test specimen weights of the order of hundreds of grams. The tests are not intended to simulate field conditions precisely. [Pg.151]

Anode output is the current available from the anode under the design conditions. It will depend on the shape of the anode, the resistivity of the environment, the protection potential of the structure and the anode operating potential. It is defined as ... [Pg.154]

Complex computer models are now available to assist in defining the optimum anode distribution . [Pg.157]

The Haring-Blum cathode is divided into two equal plane areas, distant f 1 and fj from a common anode, and a quantity called the primary current density ratio P is defined as... [Pg.365]

The potential difference across the electric double layer A. This cannot be determined in absolute terms but must be defined with reference to another charged interface, i.e. a reference electrode. In the case of a corroding metal the potential is the corrosion potential which arises from the mutual polarisation of the anodic and cathodic reactions constituting the overall corrosion reaction see Section 1.4). [Pg.1005]

Lithium deposited on an anode during a charge is chemically active and reacts with organic electrolytes after deposition. Then, the lithium is consumed during cycling. The cycling efficiency (percent) of a lithium anode (Eff) is basically defined by Eq. (1) [23], where Qp is the amount of electricity needed to plate lithium and <2S is the amount of electricity needed to strip all the plated lithium. As Eff is less than 100 percent, an excess of lithium is included in a practical rechargeable cell to compensate for the consumed lithium. [Pg.342]

Little work has been done on bare lithium metal that is well defined and free of surface film [15-24], Odziemkowski and Irish [15] showed that for carefully purified LiAsF6 tetrahydrofuran (THF) and 2-methyltetrahydrofuran 2Me-THF electrolytes the exchange-current density and corrosion potential on the lithium surface immediately after cutting in situ, are primarily determined by two reactions anodic dissolution of lithium, and cathodic reduc-... [Pg.422]

In the galvanic detector, the electrochemical detector consists of a noble metal like silver (Ag) or platinum (Pt), and a base metal such as lead (Pb) or tin (Sn), which acts as anode. The well-defined galvanic detector is immersed in the electrolyte solution. Various electrolyte solutions can be used, but commonly they may be a buffered lead acetate, sodium acetate and acetic acid mixture. The chemical reaction in the cathode with electrons generated in the anode may generate a measurable electrical voltage, which is a detectable signal for measurements of DO. The lead is the anode in the electrolyte solution, which is oxidised. Therefore the probe life is dependent on the surface area of the anode. The series of chemical reactions occurring in the cathode and anode is ... [Pg.75]


See other pages where Anode defined is mentioned: [Pg.396]    [Pg.396]    [Pg.1923]    [Pg.1926]    [Pg.524]    [Pg.550]    [Pg.505]    [Pg.507]    [Pg.277]    [Pg.49]    [Pg.49]    [Pg.265]    [Pg.363]    [Pg.93]    [Pg.118]    [Pg.119]    [Pg.123]    [Pg.214]    [Pg.231]    [Pg.1149]    [Pg.1196]    [Pg.1047]    [Pg.180]    [Pg.314]    [Pg.354]    [Pg.256]   
See also in sourсe #XX -- [ Pg.338 ]

See also in sourсe #XX -- [ Pg.257 ]




SEARCH



© 2024 chempedia.info