Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene oxide anionic polymerization

Figure I indicates the approach used to synthesize poly(oxyethylene)-b-poly(pivalolactone) telechelomers. An acetal capped anionic initiator, X (13) polymerizes ethylene oxide (EO) to give 2> a potassium alkoxide of a masked polyether, and this "new" initiator is to be used to polymerize pivalolactone (PVL). Since potassium alkoxides are strong nucleophiles, they can randomly attack at both the carbonyl carbon and the 3-methylene carbon in lactones, (Figure 2) such a random attack would result in a pivalolactone segment containing irregularities. Lenz (15), and Hall (16), and Beaman (17) have investigated PVL polymerization and have shown that the less nucleophilic carboxylate anion is preferable in polymerizing PVL smoothly. The weaker carboxylate anion will attack only at the methylene... Figure I indicates the approach used to synthesize poly(oxyethylene)-b-poly(pivalolactone) telechelomers. An acetal capped anionic initiator, X (13) polymerizes ethylene oxide (EO) to give 2> a potassium alkoxide of a masked polyether, and this "new" initiator is to be used to polymerize pivalolactone (PVL). Since potassium alkoxides are strong nucleophiles, they can randomly attack at both the carbonyl carbon and the 3-methylene carbon in lactones, (Figure 2) such a random attack would result in a pivalolactone segment containing irregularities. Lenz (15), and Hall (16), and Beaman (17) have investigated PVL polymerization and have shown that the less nucleophilic carboxylate anion is preferable in polymerizing PVL smoothly. The weaker carboxylate anion will attack only at the methylene...
Graft copolymers were prepared by polymerizing ethylene oxide onto the PVN polyradical anion (10), The latter was obtained by reaction of PVN with cesium in tetrahydrofuran solution. The copolymers were extracted with water to remove the PEO homopolymer which was formed as a byproduct. Experimental details and evidence for bond formation between ethylene oxide and the aromatic moiety were presented elsewhere (//). [Pg.168]

Reed 332) has reported that reaction of ethylene oxide with the a,(a-dilithiumpoly-butadiene in predominantly hydrocarbon media (some residual ether from the dilithium initiator preparation was present) produced telechelic polybutadienes with hydroxyl functionalities (determined by infrared spectroscopy) of 2.0 + 0.1 in most cases. A recent report by Morton, et al.146) confirms the efficiency of the ethylene oxide termination reaction for a,ta-dilithiumpolyisoprene functionalities of 1.99, 1.92 and 2.0j were reported (determined by titration using Method B of ASTM method E222-66). It should be noted, however, that term of a, co-dilithium-polymers with ethylene oxide resulted in gel formation which required 1-4 days for completion. In general, epoxides are not polymerized by lithium bases 333,334), presumably because of the unreactivity of the strongly associated lithium alkoxides641 which are formed. With counter ions such as sodium or potassium, reaction of the polymeric anions with ethylene oxide will effect polymerization to form block copolymers (Eq. (80) 334 336>). [Pg.74]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Polymers with much higher average molecular weights, from 90,000 to 4 x 10 , are formed by a process of coordinate anionic polymerization (43—45). The patent Hterature describes numerous organometaUic compounds, aLkaline-earth compounds, and mixtures as polymerization catalysts. Iron oxides that accumulate in ethylene oxide storage vessels also catalyze polymerization. This leads to the formation of nonvolatile residue (NVR) no inhibitor has been found (46). [Pg.453]

With Water. Wurtz was the first to obtain ethylene glycol by heating ethylene oxide and water in a sealed tube (1). Later, it was noted that by-products, namely diethjlene and triethylene glycol, were also formed in this reaction (50). This was the first synthesis of polymeric compounds of well-defined stmcture. Hydration is slow at ambient temperatures and neutral conditions, but is much faster with either acid or base catalysis (Table 8). The type of anion in the catalyzing acid is relatively unimportant (58) (see Glycols). [Pg.453]

Polyethylene glycol), or Carbowax, is made by anionic polymerization of ethylene oxide using NaOH as catalyst. Propose a mechanism. [Pg.1222]

Anionic polymerization of ethylene oxide by living carbanions of polystyrene was first carried out by Szwarc295. A limited number of methods have been reported in the preparation of A-B and A-B-A copolymers in which B was polystyrene and A was poly(oxyethylene)296-298. The actual procedure was to allow ethylene oxide to polymerize in a vacuum system at 70 °C with the polystyrene anion initiated with cumyl potassium in THF299. The yields of pure block copolymers are usually limited to about 80% because homopolymers are formed300. ... [Pg.25]

In a similar manner polyisoprene-polyethylene oxide block copolymers can prepared301. It is surprising that the poly(methyl methacrylate) anion can be successfully used for the polymerization of ethylene oxide without chain transfer302. Graft copolymers are also prepared by successive addition of ethylene oxide to the poly-... [Pg.25]

Quite often in the ring-opening polymerization, the polymer is only the kinetic product and later is transformed to thermodynamically stable cycles. The cationic polymerization of ethylene oxide leads to a mixture of poly(ethylene oxide) and 1,4-dioxane. In the presence of a cationic initiator poly(ethylene oxide) can be almost quantitatively transformed to this cyclic dimer. On the other hand, anionic polymerization is not accompanied by cyclization due to the lower affinity of the alkoxide anion towards linear ethers only strained (and more electrophilic) monomers can react with the anion. [Pg.86]

PS-b-PEO) , n = 3, 4 star-block copolymers were synthesized by ATRP and anionic polymerization techniques [149]. Three- or four-arm PS stars were prepared using tri- or tetrafunctional benzylbromide initiators in the presence of CuBr/bipy. The polymerization was conducted in bulk at 110 °C. The end bromine groups were reacted with ethanolamine in order to generate the PS stars with hydroxyl end groups. These functions were then activated by DPMK to promote the polymerization of ethylene oxide and afford the desired well-defined products (Scheme 73). [Pg.85]

PS-fr-PBd) star-block copolymers were synthesized by the macromonomer technique in combination with anionic polymerization and ROMP [ 158], following the procedure outlined in Scheme 83. The macromonomers were prepared with two different methods. In the first the living diblock copolymer was reacted with ethylene oxide to reduce the nucleophihcity of the living end followed by termination with 5-carbonyl chloride bicycle (2.2.1) hept-2-ene, while in the second method the functional initiator 5-lithiomethyl bicycle... [Pg.94]

It has been shown recently (10) that such block structures could be tailored precisely by the general method summarized hereabove. It is indeed possible to convert the hydroxyl end-group of a vinyl polymer PA (f.i. polystyrene, or polybutadiene obtained by anionic polymerization terminated with ethylene oxide),into an aluminum alcoholate structure since it is well known that CL polymerizes in a perfectly "living" manner by ring-opening insertion into the Al-0 bond (11), the following reaction sequence provides a direct access to the desired copolymers, with an accurate control of the molecular parameters of the two blocks ... [Pg.311]

Depending on polymerization conditions, PEG termini may consist of hydroxyl groups or may be selectively functionalized. Commercially available PEG is produced through anionic polymerization of ethylene oxide to yield a polyether struc-... [Pg.245]

Considerable effort has been carried out by different groups in the preparation of amphiphihc block copolymers based on polyfethylene oxide) PEO and an ahphatic polyester. A common approach relies upon the use of preformed co- hydroxy PEO as macroinitiator precursors [51, 70]. Actually, the anionic ROP of ethylene oxide is readily initiated by alcohol molecules activated by potassium hydroxide in catalytic amounts. The equimolar reaction of the PEO hydroxy end group (s) with triethyl aluminum yields a macroinitiator that, according to the coordination-insertion mechanism previously discussed (see Sect. 2.1), is highly active in the eCL and LA polymerization. This strategy allows one to prepare di- or triblock copolymers depending on the functionality of the PEO macroinitiator (Scheme 13a,b). Diblock copolymers have also been successfully prepared by sequential addition of the cyclic ether (EO) and lactone monomers using tetraphenylporphynato aluminum alkoxides or chloride as the initiator [69]. [Pg.22]

The range of monomers that can be incorporated into block copolymers by the living anionic route includes not only the carbon-carbon double-bond monomers susceptible to anionic polymerization but also certain cyclic monomers, such as ethylene oxide, propylene sulfide, lactams, lactones, and cyclic siloxanes (Chap. 7). Thus one can synthesize block copolymers involving each of the two types of monomers. Some of these combinations require an appropriate adjustment of the propagating center prior to the addition of the cyclic monomer. For example, carbanions from monomers such as styrene or methyl methacrylate are not sufficiently nucleophilic to polymerize lactones. The block copolymer with a lactone can be synthesized if one adds a small amount of ethylene oxide to the living polystyryl system to convert propagating centers to alkoxide ions prior to adding the lactone monomer. [Pg.438]

The anionic polymerization of epoxides such as ethylene and propylene oxides can be initiated by metal hydroxides, alkoxides, oxides, and amides as well as metal alkyls and aryls, including radical-anion species such as sodium naphthalene [Boileau, 1989 Dreyfuss and Drefyfuss, 1976 Inoue and Aida, 1984 Ishii and Sakai, 1969]. Thus the polymerization of ethylene oxide by M+A involves initiation... [Pg.548]

Polyoxymethylene, also referred to as acetal resin or POM, is obtained either by anionic polymerization of formaldehyde or cationic ring-opening copolymerization of trioxane with a small amount of a cyclic ether or acetal (e.g., ethylene oxide or 1,3-dioxolane) [Cherdron et al., 1988 Dolce and Grates, 1985 Yamasaki et al., 2001]. The properties and uses of POM have been discussed in Sec. 5-6d. [Pg.569]

Epoxides such as epoxyethane (ethylene oxide) can be polymerized cationi-cally (e.g., with Lewis acids) and anionically (e.g., with alcoholates or organome-tallic compounds). [Pg.206]


See other pages where Ethylene oxide anionic polymerization is mentioned: [Pg.604]    [Pg.606]    [Pg.38]    [Pg.259]    [Pg.512]    [Pg.74]    [Pg.220]    [Pg.241]    [Pg.342]    [Pg.437]    [Pg.516]    [Pg.804]    [Pg.603]    [Pg.5]    [Pg.26]    [Pg.26]    [Pg.153]    [Pg.87]    [Pg.395]    [Pg.20]    [Pg.27]    [Pg.62]    [Pg.79]    [Pg.707]    [Pg.937]    [Pg.178]    [Pg.656]    [Pg.664]    [Pg.230]    [Pg.550]    [Pg.759]    [Pg.60]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Anion oxidation

Anionic polymerization of ethylene oxide

Ethylene oxide , living anionic polymerization

Ethylene polymerization

Living anionic polymerization of ethylene oxide

Oxide anion

© 2024 chempedia.info