Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Termination anionic polymerization

It has been shown recently (10) that such block structures could be tailored precisely by the general method summarized hereabove. It is indeed possible to convert the hydroxyl end-group of a vinyl polymer PA (f.i. polystyrene, or polybutadiene obtained by anionic polymerization terminated with ethylene oxide),into an aluminum alcoholate structure since it is well known that CL polymerizes in a perfectly "living" manner by ring-opening insertion into the Al-0 bond (11), the following reaction sequence provides a direct access to the desired copolymers, with an accurate control of the molecular parameters of the two blocks ... [Pg.311]

As you, by now, have doubtiess anticipated, cationic polymerizations involve an active site where there is a positive charge because, in effect, there is a deficit of one electron at the active site (Figure 3-21). Cationic polymerizations can be initiated by protonic acids (Figure 3-35) or Lewis adds (the latter sometimes combined with certain halogens). Uulike anionic polymerization, termination can occur, by anion-cat-... [Pg.73]

Termination. As in anionic polymerization, termination by coupling or disproportionation cannot occur, leaving chain transfers as the most likely mechanisms. [Pg.333]

For anionic polymerization, termination can occur by neutralizing the live polymer Rj to Py... [Pg.483]

In ionic polymerizations termination by combination does not occur, since all of the polymer ions have the same charge. In addition, there are solvents such as dioxane and tetrahydrofuran in which chain transfer reactions are unimportant for anionic polymers. Therefore it is possible for these reactions to continue without transfer or termination until all monomer has reacted. Evidence for this comes from the fact that the polymerization can be reactivated if a second batch of monomer is added after the initial reaction has gone to completion. In this case the molecular weight of the polymer increases, since no new growth centers are initiated. Because of this absence of termination, such polymers are called living polymers. [Pg.405]

The manufacture of siHcone polymers via anionic polymerization is widely used in the siHcone industry. The anionic polymerization of cycHc siloxanes can be conducted in a single-batch reactor or in a continuously stirred reactor (94,95). The viscosity of the polymer and type of end groups are easily controUed by the amount of added water or triorganosUyl chain-terminating groups. [Pg.46]

Anionic polymerization offers fast polymerization rates on account of the long life-time of polystyryl carbanions. Early studies have focused on this attribute, most of which were conducted at short reactor residence times (< 1 h), at relatively low temperatures (10—50°C), and in low chain-transfer solvents (typically benzene) to ensure that premature termination did not take place. Also, relatively low degrees of polymerization (DP) were typically studied. Continuous commercial free-radical solution polymerization processes to make PS, on the other hand, operate at relatively high temperatures (>100° C), at long residence times (>1.5 h), utilize a chain-transfer solvent (ethylbenzene), and produce polymer in the range of 1000—1500 DP. [Pg.517]

Block copolymer chemistry and architecture is well described in polymer textbooks and monographs [40]. The block copolymers of PSA interest consist of anionically polymerized styrene-isoprene or styrene-butadiene diblocks usually terminating with a second styrene block to form an SIS or SBS triblock, or terminating at a central nucleus to form a radial or star polymer (SI) . Representative structures are shown in Fig. 5. For most PSA formulations the softer SIS is preferred over SBS. In many respects, SIS may be treated as a thermoplastic, thermoprocessible natural rubber with a somewhat higher modulus due to filler effect of the polystyrene fraction. Two longer reviews [41,42] of styrenic block copolymer PSAs have been published. [Pg.479]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

A polymer-bound hindered amine light stabilizer [P-HALS] has been synthesized by terminating the living anionic polymerization of isoprene with 4(2,3-epoxy pro-poxy)-1,2,2,6,6-pentamethylpiperidine followed by hydrogenation of the resulting polymer to E-P copolymer using Zeigler type catalyst [40] ... [Pg.402]

Regarding anion radical transfer, low-molecular weight azo compounds were used as terminating agents in anionic polymerizations. An interesting example is the addition of a living polystyrene chain to one nitrile group of AIBN [71]. The terminal styryl anion is likely to form... [Pg.744]

Anionic polymerization is better for vinyl monomers with electron withdrawing groups that stabilize the intermediates. Typical monomers best polymerized by anionic initiators include acrylonitrile, styrene, and butadiene. As with cationic polymerization, a counter ion is present with the propagating chain. The propagation and the termination steps are similar to cationic polymerization. [Pg.308]

In anionic polymerization, as in carbonium ion polymerization, termination does not involve bimolecular reaction between two growing chains. Neither can recombination of ions lead to termination, since a carbon-metal bond is highly polar, in the case of alkali metals frequently completely ionized, and in every case very reactive. The termination step leading to the formation of a terminal C=C double bond is not too probable. This reaction involves the formation of a metal hydride, and this does not contribute greatly to the driving force. Consequently, such a termination is observed at higher temperatures only and it is probably more common in coordination polymerization where the metals involved are less electropositive. [Pg.176]

The most common mechanism of termination in anionic polymerization involves reactions with solvents or with impurities. For... [Pg.176]

Values of CP measured in the presence of added PMMA (for example) will depend on how the PMMA was prepared and its molecular weight (i.e. on the concentration of unsaturated ends). PMMA formed by radical polymerization in the presence of a good H-donor transfer agent (or by anionic polymerization) would have only saturated chain ends. These PMMA chains should have a different transfer constant to those formed by normal radical polymerization where termination occurs by a mixture of combination and disproportionation. This could account for some of the variation in the values of CP for this polymer... [Pg.322]

Tung et al21> have reported on the use of a polymeric thiol transfer agent for use in block copolymer production. Various methods have been used for the anion thiol conversion. Near quantitative yields of thiol arc reported to have been obtained by terminating anionic polymerization with ethylene sulfide and derivatives (Scheme 7.27). Transfer constants for the polymeric thiols are reported to be similar to those of analogous low molecular weight compounds.273... [Pg.388]

The preparation of ABA triblock polymers requires use of a telechelie bisthiol prepared by termination of anionic polymerization initiated by a difunctional initiator. The relative yields of homopolymer, di- and triblock obtained in these experiments depend critically on conversion.273... [Pg.388]

Richards et at. carried out extensive studies on the use of mercury,2 6 277 lead278 279 and silver compounds to terminate anionic polymerization and form polymeric organometallic species which can be used to initiate polymerization. [Pg.388]

Anionic polymerization of lactams was shown to proceed according to what is called the activated monomer mechanism. With bischloroformates of hydroxy-terminated poly(tetramethyleneglycol) and poly(styrene glycol) as precursors for a polymeric initiator containing N-acyl lactam ends, block copolymers with n-pyrrol-idone and e-caprolactam were obtained by bulk polymerizations in vacuum at 30 and 80 °C, respectively361. ... [Pg.30]

Surprisingly, after this very first example, there was a 20 year delay in the literature in the appearance of the second report on siloxane macromonomers. However, during this period there have been numerous studies and developments in the vinyl and diene based macromonomers91 -94). The recent approach to the synthesis of siloxane macromonomers involves the lithiumtrimethylsilanolate initiated anionic polymerization of hexamethyltrisiloxane in THF 95,123). The living chain ends were then terminated by using styrene or methacrylate functional chlorosilanes as shown in Reaction Scheme X. [Pg.23]


See other pages where Termination anionic polymerization is mentioned: [Pg.1039]    [Pg.1039]    [Pg.1039]    [Pg.1039]    [Pg.298]    [Pg.236]    [Pg.353]    [Pg.437]    [Pg.493]    [Pg.517]    [Pg.346]    [Pg.4]    [Pg.169]    [Pg.177]    [Pg.161]    [Pg.186]    [Pg.455]    [Pg.3]    [Pg.251]    [Pg.804]    [Pg.216]    [Pg.3]    [Pg.4]    [Pg.5]    [Pg.31]    [Pg.156]    [Pg.19]    [Pg.21]    [Pg.29]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Anionic chain polymerization spontaneous termination

Anionic chain polymerization termination

Anionic polymerization and termination

Anionic polymerization mechanism termination process absence

Anionic polymerization spontaneous termination

Anionic polymerization termination reactions

Anionic polymerization termination with electrophilic

Polymerization terminator)

Polymerization, anionic methacryloyl terminated

Terminal 1,4-polymerization

Termination anions

Termination in anionic polymerization

© 2024 chempedia.info