Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization bases

Synthetic PAs are produced by polycondensation of bifunctional monomers or by cationic and anionic ring-opening polymerization of lactams. Polymers obtained with the first technique are linear, whereas chain branching may occur with anionic polymerization. Based on their chemical structure, synthetic polyamides may be classified into two categories [1] ... [Pg.1218]

Anionic Polymerization. Complementing the diversity in microstructure inherent to anionic chemistry, living anionic polymerization based on alkali metal alkyl initiating systems can also afford a wide range of macrostructural possibilities for polybutadiene products. [Pg.870]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Other Organolithium Compounds. Organoddithium compounds have utiHty in anionic polymerization of butadiene and styrene. The lithium chain ends can then be converted to useflil functional groups, eg, carboxyl, hydroxyl, etc (139). Lewis bases are requHed for solubdity in hydrocarbon solvents. [Pg.229]

In anionic polymerization the reaction is initiated by a strong base, eg, a metal hydride, alkah metal alkoxide, organometaHic compounds, or hydroxides, to form a lactamate ... [Pg.224]

Nylon-6 can also be produced from molten caprolactam using strong bases as catalysts (anionic polymerization) this is used as the basis of monomer casting and reaction injection mol ding (RIM). Anionic polymerization proceeds much faster than the hydrolytic route but products retain catalysts which may need to be extracted. [Pg.271]

Anionic Polymerization of Cyclic Siloxanes. The anionic polymerization of cyclosiloxanes can be performed in the presence of a wide variety of strong bases such as hydroxides, alcoholates, or silanolates of alkaH metals (59,68). Commercially, the most important catalyst is potassium silanolate. The activity of the alkaH metal hydroxides increases in the foUowing sequence LiOH < NaOH < KOH < CsOH, which is also the order in which the degree of ionization of thein hydroxides increases (90). Another important class of catalysts is tetraalkyl ammonium, phosphonium hydroxides, and silanolates (91—93). These catalysts undergo thermal degradation when the polymer is heated above the temperature requited (typically >150°C) to decompose the catalyst, giving volatile products and the neutral, thermally stable polymer. [Pg.46]

Proliferous Polymerization. Eady attempts to polymerize VP anionicaHy resulted in proliferous or "popcorn" polymerization (48). This was found to be a special form of free-radical addition polymerization, and not an example of anionic polymerization, as originally thought. VP contains a relatively acidic proton alpha to the pyrroHdinone carbonyl. In the presence of strong base such as sodium hydroxide, VP forms cross-linkers in situ probably by the following mechanism ... [Pg.525]

Cyanoacrylate adhesives cure by anionic polymerization. This reaction is catalyzed by weak bases (such as water), so the adhesives are generally stabilized by the inclusion of a weak acid in the formulation. While adhesion of cyanoacrylates to bare metals and many polymers is excellent, bonding to polyolefins requires a surface modifying primer. Solutions of chlorinated polyolefin oligomers, fran-sition metal complexes, and organic bases such as tertiary amines can greatly enhance cyanoacrylate adhesion to these surfaces [72]. The solvent is a critical component of these primers, as solvent swelling of the surface facilitates inter-... [Pg.460]

Photoinitiators provide a convenient route for synthesizing vinyl polymers with a variety of different reactive end groups. Under suitable conditions, and in the presence of a vinyl monomer, a block AB or ABA copolymer can be produced which would otherwise be difficult or impossible to produce by another polymerization method. Moreover, synthesis of block copolymers by this route is much more versatile than those based on anionic polymerization, since a wider range of a monomers can be incorporated into the blocks. [Pg.244]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Meanwhile, it was found by Asai and colleagues [48] that tetraphenylphosphonium salts having such anions as Cl, Br , and Bp4 work as photoinitiators for radical polymerization. Based on the initiation effects of changing counteranions, they proposed that a one-electron transfer mechanism is reasonable in these initiation reactions. However, in the case of tetraphenylphosphonium tetrafluoroborate, it cannot be ruled out that direct homolysis of the p-phenyl bond gives the phenyl radical as the initiating species since BF4 is not an easily pho-tooxidizable anion [49]. Therefore, it was assumed that a similar photoexcitable moiety exists in both tetraphenyl phosphonium salts and triphenylphosphonium ylide, which can be written as the following resonance hybrid [17] (Scheme 21) ... [Pg.377]

Acrylamides represent still another interesting class of monomers.6 Their anionic polymerization may be initiated by strong bases, like, e.g., amides. The growing chain contains the unit —CH2—CH —CO—NH2 and intramolecular proton transfer competes efficiently with its carbanionic growth. Since the rearrangement... [Pg.181]

An interesting feature of the ring opening polymerization of siloxanes is their ability to proceed via either anionic or cationic mechanisms depending on the type of the catalyst employed. In the anionic polymerization alkali metal hydroxides, quaternary ammonium (I NOH) and phosphonium (R POH) bases and siloxanolates (Si—Oe M ) are the most widely used catalysts 1,2-4). They are usually employed at a level of 10 2 to KT4 weight percent depending on their activities and the reaction conditions. The activity of alkali metal hydroxides and siloxanolates decrease in the following order 76 79,126). [Pg.18]

Surprisingly, after this very first example, there was a 20 year delay in the literature in the appearance of the second report on siloxane macromonomers. However, during this period there have been numerous studies and developments in the vinyl and diene based macromonomers91 -94). The recent approach to the synthesis of siloxane macromonomers involves the lithiumtrimethylsilanolate initiated anionic polymerization of hexamethyltrisiloxane in THF 95,123). The living chain ends were then terminated by using styrene or methacrylate functional chlorosilanes as shown in Reaction Scheme X. [Pg.23]

The difficulties encountered in the early studies of anionic polymerization of methyl methacrylate arose from the unfortunate choice of experimental conditions the use of hydrocarbon solvents and of lithium alkyl initiators. The latter are strong bases. Even at —60 °C they not only initiate the conventional vinyl poly-addition, but attack also the ester group of the monomer yielding a vinyl ketone1, a very reactive monomer, and alkoxide 23). Such a process is described by the scheme. [Pg.97]

Interest in anionic polymerizations arises in part from the reactivity of the living carbanionic sites4 7) Access can be provided to polymers with a functional chain end. Such species are difficult to obtain by other methods. Polycondensations yield ro-functional polymers but they provide neither accurate molecular weight control nor low polydispersity. Recently Kennedy51) developed the inifer technique which is based upon selective transfer to fit vinylic polymers obtained cationically with functions at chain end. Also some cationic ring-opening polymerizations52) without spontaneous termination can yield re-functional polymers upon induced deactivation. Anionic polymerization remains however the most versatile and widely used method to synthesize tailor made re-functional macromolecules. [Pg.155]

The above discussion has been based on conventional free-radical catalysis. There has been substantial research on long-lived free radicals that can give a living polymer without the severe cleanliness requirements of anionic polymerizations. Unfortunately, it has not yet had commercial success. [Pg.486]

Though living anionic polymerization is the most widely used technique for synthesizing many commercially available TPEs based on styrenic block copolymers, living carbocationic polymerization has also been developed in recent years for such purposes [10,11], Polyisobutylene (PlB)-based TPEs, one of the most recently developed classes, are synthesized by living carbocationic polymerization with sequential monomer addition and consists of two basic steps [10] as follows ... [Pg.107]

Interestingly, Reggelin et al. [147] prepared helical chiral polymers by helix-sense selective anionic polymerization of methacrylates, using an asymmetric base mixture as initiator (Scheme 61). [Pg.142]

A radical initiator based on the oxidation adduct of an alkyl-9-BBN (47) has been utilized to produce poly(methylmethacrylate) (48) (Fig. 31) from methylmethacrylate monomer by a living anionic polymerization route that does not require the mediation of a metal catalyst. The relatively broad molecular weight distribution (PDI = (MJM ) 2.5) compared with those in living anionic polymerization cases was attributed to the slow initiation of the polymerization.69 A similar radical polymerization route aided by 47 was utilized in the synthesis of functionalized syndiotactic polystyrene (PS) polymers by the copolymerization of styrene.70 The borane groups in the functionalized syndiotactic polystyrenes were transformed into free-radical initiators for the in situ free-radical graft polymerization to prepare s-PS-g-PMMA graft copolymers. [Pg.41]

In an attempt to combine the syndioselectivity of half-sandwich titanium catalysts with the living characteristics of anionic polymerization initiators, the use of half-sandwich calcium-based catalysts has been described.363 364 In neat styrene complex (152) affords 76% rr triad PS. However, polydispersities are still quite high (Mw/Mn > 2.2)... [Pg.19]

Unlike the PEG molecules formed from anionic polymerization techniques, there now exist highly discrete forms of the polymer made by controlled addition of small PEG units to create chains of exacting molecular size. These discrete PEGs have a single molecular weight and do not display the polydispersity of the traditional PEG polymers. See Chapter 18 for a complete discussion of discrete PEG-based reagents and their applications. [Pg.937]


See other pages where Anionic polymerization bases is mentioned: [Pg.21]    [Pg.219]    [Pg.289]    [Pg.12]    [Pg.21]    [Pg.219]    [Pg.289]    [Pg.12]    [Pg.236]    [Pg.238]    [Pg.349]    [Pg.350]    [Pg.160]    [Pg.500]    [Pg.58]    [Pg.1208]    [Pg.147]    [Pg.19]    [Pg.107]    [Pg.108]    [Pg.227]    [Pg.72]    [Pg.288]    [Pg.103]    [Pg.104]    [Pg.121]    [Pg.656]    [Pg.661]    [Pg.664]    [Pg.150]   


SEARCH



Anionic Polymerization by Lewis Bases

Anionic polymerization complex bases

Lewis bases anionic polymerization modifier

Miktoarm Star Polymers by Other Methodologies Based on Living Anionic Polymerization

Polymeric bases

© 2024 chempedia.info