Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton transfer, intramolecular

Complexes involving phenols can clearly be of many kinds. Mnch of the effort in this review will be concentrated on complexes with bases leading possibly to proton transfer. Intramolecular proton transfer has been treated too for a number of types of compounds (see Section II.J). Bases in the complexes are typically pyridines, aromatic and aliphatic amines, amine iV-oxides and phosphine oxides. This is one of the rather difficult areas to review due to the fact that it is not always clear whether a single or a double potential well type is at play. Complexes have also been studied in a few cases in the solid state (see Section II.N). [Pg.363]

Complex formation between iron(in) and ten phenols has been studied and it has been confirmed that the reaction rate is acid-independent in the pH range 0—2. A mechanism for the aquation of the iron(ni)-phenol complex is proposed in which a proton transfers intramolecularly from a co-ordinated water molecule to a phenolate ion ... [Pg.268]

Bimolecular photoreduction of ketones by good electron donors often proceeds by either electron transfer or charge transfer complexation, followed by a proton transfer. Intramolecular hydrogen transfers sometimes follow this pathway as well. There is good evidence from the behavior of aminoketones that tight... [Pg.1153]

Marzocchi M P, Mantini A R, Casu M and Smulevich G 1997 Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis J. Chem. Phys. 108 1-16... [Pg.1227]

Mavri, J., Berendsen, H.J.C., Van Gunsteren, W.F. Influence of solvent on intramolecular proton transfer in hydrogen malonate. Molecular dynamics study of tunneling by density matrix evolution and nonequilibrium solvation. J. Phys. Chem. 97 (1993) 13469-13476. [Pg.34]

DFT STUDY OF 8-MERCAPTOQUINOLINE INTRAMOLECULAR HYDROGEN BOND, SINGLE PROTON TRANSFER AND WATER-ASSISTED TAUTOMERIZATION... [Pg.52]

The situation presented in fig. 29 corresponds to the sudden limit, as we have already explained in the previous subsection. Having reached a bend point at the expense of the low-frequency vibration, the particle then cuts straight across the angle between the reactant and product valley, tunneling along the Q-direction. The sudden approximation holds when the vibration frequency (2 is less than the characteristic instanton frequency, which is of the order of In particular, the reactions of proton transfer (see fig. 2), characterised by high intramolecular vibration frequency, are being usually studied in this approximation [Ovchinnikova 1979 Babamov and Marcus 1981]. [Pg.71]

The relative importance of the potential catalytic mechanisms depends on pH, which also determines the concentration of the other participating species such as water, hydronium ion, and hydroxide ion. At low pH, the general acid catalysis mechanism dominates, and comparison with analogous systems in which the intramolecular proton transfer is not available suggests that the intramolecular catalysis results in a 25- to 100-fold rate enhancement At neutral pH, the intramolecular general base catalysis mechanism begins to operate. It is estimated that the catalytic effect for this mechanism is a factor of about 10. Although the nucleophilic catalysis mechanism was not observed in the parent compound, it occurred in certain substituted derivatives. [Pg.492]

Another type of bifunctional catalysis has been noted with a,cn-diamines in which one of the amino groups is primary and the other tertiary. These substituted diamines are from several times to as much as 100 times more reactive toward imine formation than similar monofunctional amines. This is attributed to a catalytic intramolecular proton transfer. [Pg.494]

The formation of the less favored trisubstituted isomer (37) occurs by the usual intramolecular axial proton transfer from the 6 position, whereas that of the tetrasubstituted isomer (38) involves the intramolecular proton transfer of the stereoelectronically less favored equatorial proton either via a four-membered transition state (39) or a six-membered transition state (40). [Pg.16]

The presence of an substituent, found in the pyrrolidine enamine of 2-methylcyclohexanone, blocks the possibility of an intramolecular proton transfer in the zwitterionic intermediate and thus only the benzocyclobutane... [Pg.382]

The mechanism of the indolization of aniline 5 with methylthio-2-propanone 6 is illustrated below. Aniline 5 reacts with f-BuOCl to provide A-chloroaniline 9. This chloroaniline 9 reacts with sulfide 6 to yield azasulfonium salt 10. Deprotonation of the carbon atom adjacent to the sulfur provides the ylide 11. Intramolecular attack of the nucleophilic portion of the ylide 11 in a Sommelet-Hauser type rearrangement produces 12. Proton transfer and re-aromatization leads to 13 after which intramolecular addition of the amine to the carbonyl function generates the carbinolamine 14. Dehydration of 14 by prototropic rearrangement eventually furnishes the indole 8. [Pg.128]

An intramolecular photochemical proton-transfer mechanism has also been postulated by W. C. Clark and G. F. Lothian [7Vans. Faraday Soc. 54, 1790 (1958)]. [Pg.317]

Any doubt about the existence of individual tautomers is now long past some tautomers can be crystallized separately (desmotropy), and others can be observed simultaneously in the same crystal (Section V,D,2) in summary, tautomers are not intrinsically different from isomers. Maybe it is worth mentioning that even two identical tautomers can differ. This is the case for the two intramolecular hydrogen-bonded (IMHB) enol tautomers of acetylacetone and for many NH-azoles they correspond to a doublewell profile for the proton transfer with both wells having the same energy (autotrope). [Pg.6]

High barrier is the barrier from the most stable tautomer to the less stable one. Intramolecular proton transfer. [Pg.23]

State Proton Transfer (Section VIII). The general problem of intramolecular proton transfers includes tunneling paths (91JPC10457). The most relevant results are reported in Table VI. [Pg.23]

All the intramolecular proton transfers correspond to three TSfs of types A, B, and C. Case A is that of 2-pyridone (15a 15b), guanine 13... [Pg.23]

Tliere are several reasons for this great interest in the tautomerism of porphyrins (which could justify its own review) (1) their biological significance, (2) their applications in material science ( hole burning is related to their tautomerism), (3) the simplicity of the system (annular tautomerism involving intramolecular proton transfer both in solution and in the solid state), and (4) the possibility of elucidating the kinetic processes in great detail. [Pg.16]

Such modifications can be produced either in the kinetic aspects (proton transfer) or in the equilibrium constant. Both effects are mediated by intramolecular hydrogen bonds. For instance, Navarro et al. (93MI69) showed that the rate of proton transfer between the two nitrogen atoms of pyrazole (annular tautomerism) is considerably reduced in macrocycles containing oxygen or nitrogen atoms in the macroring. [Pg.38]

Acrylamides represent still another interesting class of monomers.6 Their anionic polymerization may be initiated by strong bases, like, e.g., amides. The growing chain contains the unit —CH2—CH —CO—NH2 and intramolecular proton transfer competes efficiently with its carbanionic growth. Since the rearrangement... [Pg.181]

A large red shift observed in polar solvents was indicative of the intramolecular charge transfer character of the triplet state. The change of dipole moment accompanying the transition Tj - Tn, as well as rate constants for electron and proton transfer reactions involving the T state of a-nitronaphthalene, were determined. The lower reactivity in polar solvents was attributed to a reduced n-n and increased charge transfer character of the triplet state... [Pg.737]

The ionization of (E)-diazo methyl ethers is catalyzed by the general acid mechanism, as shown by Broxton and Stray (1980, 1982) using acetic acid and six other aliphatic and aromatic carboxylic acids. The observation of general acid catalysis is evidence that proton transfer occurs in the rate-determining part of the reaction (Scheme 6-5). The Bronsted a value is 0.32, which indicates that in the transition state the proton is still closer to the carboxylic acid than to the oxygen atom of the methanol to be formed. If the benzene ring of the diazo ether (Ar in Scheme 6-5) contains a carboxy group in the 2-position, intramolecular acid catalysis is observed (Broxton and McLeish, 1983). [Pg.113]

A true intramolecular proton transfer in the second step of an azo coupling reaction was found by Snyckers and Zollinger (1970a, 1970b) in the reaction of the 8-(2 -pyridyl)-2-naphthoxide ion (with the transition state 12.151). This compound shows neither a kinetic deuterium isotope effect nor general base catalysis, in contrast to the sterically similar 8-phenyl-2-naphthoxide ion. Obviously the heterocyclic nitrogen atom is the proton acceptor. [Pg.362]


See other pages where Proton transfer, intramolecular is mentioned: [Pg.88]    [Pg.1024]    [Pg.160]    [Pg.162]    [Pg.396]    [Pg.1023]    [Pg.88]    [Pg.1024]    [Pg.160]    [Pg.162]    [Pg.396]    [Pg.1023]    [Pg.1982]    [Pg.2577]    [Pg.349]    [Pg.494]    [Pg.54]    [Pg.86]    [Pg.120]    [Pg.161]    [Pg.190]    [Pg.191]    [Pg.282]    [Pg.282]    [Pg.21]    [Pg.22]    [Pg.22]    [Pg.738]    [Pg.361]    [Pg.446]   
See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.436 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.176 ]

See also in sourсe #XX -- [ Pg.15 , Pg.25 , Pg.95 , Pg.97 , Pg.99 , Pg.401 ]




SEARCH



Proton intramolecular

Protonation intramolecular

© 2024 chempedia.info