Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anion exchange complex

The pollutant or solute cycle — that may encompass the processes of advection, diffusion, volatilization, adsorption and desorption, chemical degradation or decay, hydrolysis, photolysis, oxidation, cation or anion exchange, complexation, chemical equilibria, nutrient cycles, and others (see section 3.0). [Pg.56]

Co, Zn, Cd Anion-exchange complexes with 2-(3 -sulfobenzoyl)-pyridine-2-pyridylhydrazone 300 331)... [Pg.195]

Dowex 1-X2 0.6 0.65 Strongly basic anion exchanger with S-DVB matrix for separation of small peptides, nucleotides, and large metal complexes. Molecular weight exclusion is <2700. [Pg.1110]

Ion-exchange separations can also be made by the use of a polymer with exchangeable anions in this case, the lanthanide or actinide elements must be initially present as complex ions (11,12). The anion-exchange resins Dowex-1 (a copolymer of styrene and divinylben2ene with quaternary ammonium groups) and Amherlite IRA-400 (a quaternary ammonium polystyrene) have been used successfully. The order of elution is often the reverse of that from cationic-exchange resins. [Pg.215]

Uranium ores are leached with dilute sulfuric acid or an alkaline carbonate [3812-32-6] solution. Hexavalent uranium forms anionic complexes, such as uranyl sulfate [56959-61-6], U02(S0 3, which are more selectively adsorbed by strong base anion exchangers than are other anions in the leach Hquors. Sulfate complexes are eluted with an acidified NaCl or ammonium nitrate [6484-52-2], NH NO, solution. Carbonate complexes are eluted with a neutral brine solution. Uranium is precipitated from the eluent and shipped to other locations for enrichment. Columnar recovery systems were popular in South Africa and Canada. Continuous resin-in-pulp (RIP) systems gained popularity in the United States since they eliminated a difficult and cosdy ore particle/leach hquor separation step. [Pg.387]

Ion Excha.nge, The recovery of uranium from leach solutions using ion exchange is a very important process (42). The uranium(VI) is selectively adsorbed to an anion-exchange resin as either the anionic sulfato or carbonato complexes. In carbonate solutions, the uranyl species is thought to be the tris carbonato complex, U02(C03) 3 [24646-13-7] and from sulfate solutions the anion is likely to be U02(S0 , where nis ) [56959-61-6] or 2 [27190-85-8], The uranium is eluted from the resin with a salt or acid solution of 1 AfMCl or MNO (M = H", Na", The sulfate solution is... [Pg.317]

Hplc techniques are used to routinely separate and quantify less volatile compounds. The hplc columns used to affect this separation are selected based on the constituents of interest. They are typically reverse phase or anion exchange in nature. The constituents routinely assayed in this type of analysis are those high in molecular weight or low in volatility. Specific compounds of interest include wood sugars, vanillin, and tannin complexes. The most common types of hplc detectors employed in the analysis of distilled spirits are the refractive index detector and the ultraviolet detector. Additionally, the recent introduction of the photodiode array detector is making a significant impact in the analysis of distilled spirits. [Pg.89]

ANION-EXCHANGE EXTRACTION OF ZINC THIOCYANATE COMPLEXES BY NON-SYMMETRIC QUATERNARY AMMONIUM SALTS... [Pg.275]

In this work, the results of study of zinc thiocyanate complexes anion-exchange extraction by non-symmetric QASes in toluene ai e discussed. The non-symmetric QASes have the common formula [(C,3H g03)N(CH3) (C,H Q3 J-X-, where C,3H3 03 - highly lipophilic substituent, (2, 3, 4-tn. s-dodecyloxy)benzyl. It was found that exchange... [Pg.275]

It has been shown that the effects found are caused by specific solvation of both the PhAA ionogenic and other polar groups by the plasticizers used, as well as by the influence of ion-exchangers nature on the PhAA cations-anionic sites complex formation constants. [Pg.320]

The symbol R3N represents the complex weakly basic anion-exchanger radical. The symbol R,N represents the complex strongly basic anion-exchanger radical. [Pg.444]

The separation of basic precipitates of hydrous Th02 from the lanthanides in monazite sands has been outlined in Fig. 30.1 (p. 1230). These precipitates may then be dissolved in nitric acid and the thorium extracted into tributyl phosphate, (Bu"0)3PO, diluted with kerosene. In the case of Canadian production, the uranium ores are leached with sulfuric acid and the anionic sulfato complex of U preferentially absorbed onto an anion exchange resin. The Th is separated from Fe, A1 and other metals in the liquor by solvent extraction. [Pg.1255]

It was recently found that the modification of neutral phosphine ligands with cationic phenylguanidinium groups represents a very powerful tool with which to immobilize Rh-complexes in ionic liquids such as [BMIM][PFg] [76]. The guani-dinium-modified triphenylphosphine ligand was prepared from the corresponding iodide salt by anion-exchange with [NH4][PFg] in aqueous solution, as shown in Scheme 5.2-15. The iodide can be prepared as previously described by Stelzer et al. [73]. [Pg.237]

Interestingly, the specific environment of the ionic solvent system appears to activate the chiral Ni-catalyst beyond a simple anion-exchange reaction. This becomes obvious from the fact that even the addition of a 100-fold excess of Fi[(CF3S02)2N] or Na[BF4] in pure, compressed CO2 produced an at best moderate activation of Wilke s complex in comparison to the reaction in ionic liquids with the corresponding counter-ion (e.g., 24.4 % styrene conversion with 100-fold excess of Fi[(CF3S02)2N], in comparison to 69.9 % conversion in [EMIM][(CF3S02)2N] under otherwise identical conditions). [Pg.285]

Theory. Cadmium and zinc form negatively charged chloro-complexes which are absorbed by a strongly basic anion exchange resin, such as Duolite A113. The maximum absorption of cadmium and zinc is obtained in 0.12 M hydrochloric acid containing 100 g of sodium chloride per litre. The zinc is eluted quantitatively by a 2M sodium hydroxide solution containing 20 g of sodium chloride per litre, while the cadmium is retained on the resin. Finally, the cadmium is eluted... [Pg.210]

The abbreviations for the investigation methods are also taken from the nomenclature of Sillen and Martel 1 (76) aiex = anion exchange cal = calorimetry ciex = cation exchange dis = distribution between two phases est = estimate red = e.m.f. with redox electrode sp = spectrophotometry. Our selected data, rather limited in number, arise from the present status of the IAEA assessment of inorganic complexes of the actinides (12). [Pg.91]

One important point to stress from these results is the possibihty of using copper chloride instead of copper triflate to prepare the complexes. It is well known that in organic solvents there is a dramatic counteranion effect on the activity and enantioselectivity of these catalysts. On the other hand, the rapid anion exchange produced in the ionic hquid resulted in better performance of the complexes, as the bis(triflyl)imide behaves in a similar way to the triflate counteranion. [Pg.171]

In 2004, Bolm et al. reported the use of chiral iridium complexes with chelating phosphinyl-imidazolylidene ligands in asymmetric hydrogenation of functionalized and simple alkenes with up to 89% ee [17]. These complexes were synthesized from the planar chiral [2.2]paracyclophane-based imida-zolium salts 74a-c with an imidazolylidenyl and a diphenylphosphino substituent in pseudo ortho positions of the [2.2]paracyclophane (Scheme 48). Treatment of 74a-c with t-BuOLi or t-BuOK in THF and subsequent reaction of the in situ formed carbenes with [Ir(cod)Cl]2 followed by anion exchange with NaBARF afforded complexes (Rp)-75a-c in 54-91% yield. The chela-... [Pg.222]


See other pages where Anion exchange complex is mentioned: [Pg.482]    [Pg.62]    [Pg.375]    [Pg.382]    [Pg.386]    [Pg.388]    [Pg.25]    [Pg.317]    [Pg.131]    [Pg.378]    [Pg.1500]    [Pg.257]    [Pg.259]    [Pg.262]    [Pg.302]    [Pg.22]    [Pg.54]    [Pg.1255]    [Pg.186]    [Pg.202]    [Pg.208]    [Pg.355]    [Pg.84]    [Pg.126]    [Pg.258]    [Pg.258]    [Pg.312]    [Pg.53]    [Pg.220]    [Pg.179]    [Pg.67]   


SEARCH



Anion complexation

Anion exchange

Anion exchanger

Anion, , complex

Anionic exchange

Anionic exchangers

Anions anion exchange

Complex anionic

© 2024 chempedia.info