Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylenation anhydrides

Ethanolamines Maleic anhydride Methylene diphenyl diisocy. [Pg.221]

Table II. Relative Rates of Acylation with Trifluoroacetic Anhydride Methylene Chloride at O C. Table II. Relative Rates of Acylation with Trifluoroacetic Anhydride Methylene Chloride at O C.
A soln. of cis,frans,trans-cyclododeca-l,5,9-triene, maleic anhydride, methylene blue and Thionine as inhibitors in trichlorobenzene stirred and heated 40 hrs. at 190 ciS,frans,frans-cyclododeca-2,5,9-trienylsuccinic anhydride. Y 73-99%. [Pg.462]

The chemistry involved in curable poly(ester imide) formulations is well established, and it is still based on trimellitic anhydride, methylene dianiline, and low molecular weight polyesters of aromatic dicarboxylic acids and glycols, along with a classical heterocyclic triol, 2,4,6-trishydroxyethyl isocyanurate (THEIC), as it is shown in Scheme (29). The composition is formulated in a way that the final polymers, although linear, contain free —OH groups, both as chain ends and as side reactive groups. At the moment of... [Pg.575]

Place a mixture of 1 0 g. of the hydrocarbon, 10 ml. of dry methylene chloride or ethylene dichloride or syw.-tetrachloroethane, 2 5 g. of powdered anhydrous aluminium chloride and 1-2 g. of pure phthalic anhydride in a 50 ml. round-bottomed flask fitted with a short reflux condenser. Heat on a water bath for 30 minutes (or until no more hydrogen chloride fumes are evolved), and then cool in ice. Add 10 ml. of concentrated hydrochloric acid cautiously and shake the flask gently for 5 min utes. Filter oflf the solid at the pump and wash it with 10-15 ml. of cold water. Boil the resulting crude aroylbenzoic acid with 10 ml. of 2 -5N sodium carbonate solution and 0 2 g. of decolourising carbon for 5 minutes, and filter the hot solution. Cool, add about 10 g. of crushed ice and acidify... [Pg.519]

The mechanism of the reaction, which is of the aldol type, involves the car-bonyl group of tlie aldehyde and an active methylene group of the anhydride the function of the basic catalyst B (acetate ion 0H3000 or triethylamine N(0,Hb)j) is to form the anion of the active hydrogen component, i.e., by the extraction of a proton from the anhydride ... [Pg.707]

If this electrostatic treatment of the substituent effect of poles is sound, the effect of a pole upon the Gibbs function of activation at a particular position should be inversely proportional to the effective dielectric constant, and the longer the methylene chain the more closely should the effective dielectric constant approach the dielectric constant of the medium. Surprisingly, competitive nitrations of phenpropyl trimethyl ammonium perchlorate and benzene in acetic anhydride and tri-fluoroacetic acid showed the relative rate not to decrease markedly with the dielectric constant of the solvent. It was suggested that the expected decrease in reactivity of the cation was obscured by the faster nitration of ion pairs. [Pg.173]

Direct Borohydride Reduction of Alcohols to Alkanes with Phosphonium Anhydride Activation N-Proovlbenzene. To a solution of 5.56 g (20 mmol) of triphenylphosphine oxide in 30mL of dry methylene chloride at CfC was added dropwise a solution of 1.57 mL (10 mmol) of triflic anhydride in 30mL of dry methylene chloride. After 15 min when the precipitate appeared, a solution of 1.36g (10 mmol) of 3-phenyl-1-propanol in 10 mL of dry methylene chloride was added and the precipitate vanished in 5 min. An amount of 1.5g (40 mmol) of sodium borohydride was added as a solid all at once and the slurry was stirred at room temperature for... [Pg.203]

Like butadiene, allene undergoes dimerization and addition of nucleophiles to give 1-substituted 3-methyl-2-methylene-3-butenyl compounds. Dimerization-hydration of allene is catalyzed by Pd(0) in the presence of CO2 to give 3-methyl-2-methylene-3-buten-l-ol (1). An addition reaction with. MleOH proceeds without CO2 to give 2-methyl-4-methoxy-3-inethylene-1-butene (2)[1]. Similarly, piperidine reacts with allene to give the dimeric amine 3, and the reaction of malonate affords 4 in good yields. Pd(0) coordinated by maleic anhydride (MA) IS used as a catalyst[2]. [Pg.450]

Anilino vinyl derivatives of thiazolium (30, R = H) or acetanilido (30, R = C0CH3), as well as formyl methylene 30b (methods E-G), give asymmetrical dyes when condensed with a methyl reactive group of another species (Scheme 42). Mesosubstituted symmetrical or unsymmet-rical thiazolocyanines are obtainable via /S-alkylmercaptovinyl thiazolium derivatives (32) (methods H and I) (Scheme 43). a or /S carbon atoms of the trimethine chain can be substituted by acetyl when a dye is treated with acetic anhydride (method L). The hydrolysis of neocyanines lead to trimethine cyanine by fractional elimination of a composant chain (method K). [Pg.55]

Two different access routes are used, whether the leaving group is carried on thiazolium derivatives such as anilinovinyl (method A), acetanilidovinyl (method B), formyl methylene, or thioformylmethylene or on the ketomethylene compound (method C). The use of acid anhydride together with pyridine has been patented (method E). [Pg.60]

Just as most other aldehydes do, furfural condenses with compounds possessing active methylene groups such as aUphatic carboxyUc esters and anhydrides, ketones, aldehydes, nitriles, and nitroparaffins. [Pg.77]

Acetic anhydride adds to acetaldehyde in the presence of dilute acid to form ethyUdene diacetate [542-10-9], boron fluoride also catalyzes the reaction (78). Ethyfldene diacetate decomposes to the anhydride and aldehyde at temperatures of 220—268°C and initial pressures of 14.6—21.3 kPa (110—160 mm Hg) (79), or upon heating to 150°C in the presence of a zinc chloride catalyst (80). Acetone (qv) [67-64-1] has been prepared in 90% yield by heating an aqueous solution of acetaldehyde to 410°C in the presence of a catalyst (81). Active methylene groups condense acetaldehyde. The reaction of isobutfyene/715-11-7] and aqueous solutions of acetaldehyde in the presence of 1—2% sulfuric acid yields alkyl-y -dioxanes 2,4,4,6-tetramethyl-y -dioxane [5182-37-6] is produced in yields up to 90% (82). [Pg.51]

Most cellulose acetate is manufactured by a solution process, ie, the cellulose acetate dissolves as it is produced. The cellulose is acetylated with acetic anhydride acetic acid is the solvent and sulfuric acid the catalyst. The latter can be present at 10—15 wt % based on cellulose (high catalyst process) or at ca 7 wt % (low catalyst process). In the second most common process, the solvent process, methylene chloride replaces the acetic acid as solvent, and perchloric acid is frequentiy the catalyst. There is also a seldom used heterogeneous process that employs an organic solvent as the medium, and the cellulose acetate produced never dissolves. More detailed information on these processes can be found in Reference 28. [Pg.294]

Norethindrone may be recrystakhed from ethyl acetate (111). It is soluble in acetone, chloroform, dioxane, ethanol, and pyridine slightly soluble in ether, and insoluble in water (112,113). Its crystal stmcture has been reported (114), and extensive analytical and spectral data have been compiled (115). Norethindrone acetate can be recrystakhed from methylene chloride/hexane (111). It is soluble in acetone, chloroform, dioxane, ethanol, and ether, and insoluble in water (112). Data for identification have been reported (113). The preparation of norethindrone (28) has been described (see Fig. 5). Norethindrone acetate (80) is prepared by the acylation of norethindrone. Norethindrone esters have been described ie, norethindrone, an appropriate acid, and trifiuoroacetic anhydride have been shown to provide a wide variety of norethindrone esters including the acetate (80) and enanthate (81) (116). [Pg.217]

Oxidation. Maleic and fumaric acids are oxidized in aqueous solution by ozone [10028-15-6] (qv) (85). Products of the reaction include glyoxyhc acid [298-12-4], oxalic acid [144-62-7], and formic acid [64-18-6], Catalytic oxidation of aqueous maleic acid occurs with hydrogen peroxide [7722-84-1] in the presence of sodium tungstate(VI) [13472-45-2] (86) and sodium molybdate(VI) [7631-95-0] (87). Both catalyst systems avoid formation of tartaric acid [133-37-9] and produce i j -epoxysuccinic acid [16533-72-5] at pH values above 5. The reaction of maleic anhydride and hydrogen peroxide in an inert solvent (methylene chloride [75-09-2]) gives permaleic acid [4565-24-6], HOOC—CH=CH—CO H (88) which is useful in Baeyer-ViUiger reactions. Both maleate and fumarate [142-42-7] are hydroxylated to tartaric acid using an osmium tetroxide [20816-12-0]/io 2LX.e [15454-31 -6] catalyst system (89). [Pg.452]

Reactions. Heating an aqueous solution of malonic acid above 70°C results in its decomposition to acetic acid and carbon dioxide. Malonic acid is a useful tool for synthesizing a-unsaturated carboxyUc acids because of its abiUty to undergo decarboxylation and condensation with aldehydes or ketones at the methylene group. Cinnamic acids are formed from the reaction of malonic acid and benzaldehyde derivatives (1). If aUphatic aldehydes are used acryhc acids result (2). Similarly this facile decarboxylation combined with the condensation with an activated double bond yields a-substituted acetic acid derivatives. For example, 4-thiazohdine acetic acids (2) are readily prepared from 2,5-dihydro-l,3-thiazoles (3). A further feature of malonic acid is that it does not form an anhydride when heated with phosphorous pentoxide [1314-56-3] but rather carbon suboxide [504-64-3] [0=C=C=0], a toxic gas that reacts with water to reform malonic acid. [Pg.465]

From the chemical point of view, succinic acid and its anhydride are characterized by the reactivity of the two carboxyUc functions and of the two methylene groups. Uses range from pharmaceuticals to food, detergents, cosmetics, plastics and resins, plant growth regulators, textiles, photography, and gas and water treatment. [Pg.534]

Succinic acid and anhydride undergo most of the reactions characteristic of dicarboxyhc acids and cycHc acid anhydrides, respectively. Other interesting reactions take place at the active methylene groups. [Pg.535]

Halogenation. Succinic acid and succinic anhydride react with halogens through the active methylene groups. Succinic acid heated in a closed vessel at 100°C with bromine yields 2,3-dibromosuccinic acid almost quantitatively. The yield is reduced in the presence of excess water as a result of the formation of brominated hydrocarbons. The anhydride gives the mono- or dibromo derivative, depending on the equivalents of bromine used. [Pg.535]

Cellulose valerates have been synthesized by conventional methods using valeric anhydride and sulfuric acid catalyst (25,26). Alternatively, the cellulose is activated by soaking in water, which is then displaced by methylene chloride or valeric acid the temperature is maintained at <38° C to minimize degradation. [Pg.251]

There are a variety of reaction systems that allow the formation of cellulose trinitrate [9046-47-3]. HNO in methylene chloride, CH2CI2, yields a trinitrate with essentially no degradation of the cellulose chain (53). The HNO /acetic acid/acetic anhydride system is also used to obtain the trinitrate product with the fiber stmcture largely intact (51,52). Another polymer analogous reaction utilises a 1 1 mixture of HNO and H PO with 2.5% P2O5 to achieve an almost completely nitrated product (54). [Pg.268]

Cyclopentadiene contains conjugated double bonds and an active methylene group and can thus undergo a Diels-Alder diene addition reaction with almost any unsaturated compound, eg, olefins, acetylene, maleic anhydride, etc. The number of its derivatives is extensive only the reactions and derivatives considered most important are discussed. [Pg.429]

Pyrrole and alkylpyrroles can be acylated by heating with acid anhydrides at temperatures above 100 °C. Pyrrole itself gives a mixture of 2-acetyl- and 2,5-diacetyl-pyrrole on heating with acetic anhydride at 150-200 °C. iV-Acylpyrroles are obtained by reaction of the alkali-metal salts of pyrrole with an acyl halide. AC-Acetylimidazole efficiently acetylates pyrrole on nitrogen (65CI(L)1426). Pyrrole-2-carbaldehyde is acetylated on nitrogen in 80% yield by reaction with acetic anhydride in methylene chloride and in the presence of triethylamine and 4-dimethylaminopyridine (80CB2036). [Pg.51]

Isatin (190) is a compound with interesting chemistry. It can be iV-acetylated with acetic anhydride, iV-methylated via its sodium or potassium salt and O-methylated via its silver salt. Oxidation of isatins with hydrogen peroxide in methanolic sodium methoxide yields methyl anthranilates (81AG(E)882>. In moist air, O-methylisatin (191) forms methylisatoid (192). Isatin forms normal carbonyl derivatives (193) with ketonic reagents such as hydroxylamine and phenylhydrazine and the reactive 3-carbonyl group also undergoes aldol condensation with active methylene compounds. Isatin forms a complex derivative, isamic acid (194), with ammonia (76JCS(P1)2004). [Pg.77]

Thermolysis of trithiane (69) or carbonate (70) at reduced pressure yields methylene-thiirane which is stable in cold, dilute solution (Scheme 152) (78JA7436, 78RTC214). A novel acenaphthylene episulfide is obtained by treatment of the six-membered sulfoxide (71) with acetic anhydride (Scheme 153) (68JA1676), and photolysis of (72) gives a low yield of episulfide (73 Scheme 154) (72JA521). Low yields may be due to the desulfurization of the thiiranes under the reaction conditions. [Pg.181]

P-o 3-ketal in 130 ml of glacial acetic acid and 130 ml of water is maintained at 80° for 30 min, poured onto ice, made alkaline with sodium hydroxide and extracted with methylene dichlofide. The extracts are washed once with water, dried over magnesium sulfate, filtered, and evaporated to a residue. A solution of this residue in 240 ml of pyridine and 120 ml of acetic anhydride is kept at room temperature for 1.25 hr and then poured into hydrochloric acid-ice water. The mixture is extracted with methylene dichloride and the methylene dichloride solution is washed until neutral, dried over magnesium sulfate and filtered. The filtrate is evaporated to dryness to yield 13 g. Crystallization from aqueous acetone yields 11.8 g (92%) mp 251-255° [ ]d —1° (dioxane). [Pg.96]

Tnalkylindoles undergoFnedel-Crafts reactions at position 6, however, in tnfluoroacetic anhydride the a-methyl group of 1,2,3-trimethylindole is acylated through an intermediate enamine [41, 42] (equation 27) Similarly, tnfluoroacetic anhydnde acylates the double bond of the a-methylene compound shown [42] (equation 28)... [Pg.416]

Hexafluorabenzene may also add to methylene Lnphenylphosphorane to form a new pentafluorophenyl-bearing yhde Treatment of tins ylide with an acid fluonde or acid anhydride followed by pyrolysis (shown in equation 58) forms the corresponding pentafluorophenylacetylene [66] (equation 58). [Pg.592]

The preparation of perfluoroalkylzinc compounds has been achieved earlier 111 ethereal solvents [26] However, solvent effects play a significant role in the course of this reaction When a mixture of acetic anhydride and methylene chloride is used, coupled and cross-coupled products can be formed [27, 28] (equations 19 and 20) However, the cross-coupling reaction often gives mixtures, a fact that seriously restricts the synthetic applicability of this reaction [27, 28, 29]... [Pg.674]


See other pages where Methylenation anhydrides is mentioned: [Pg.178]    [Pg.18]    [Pg.178]    [Pg.18]    [Pg.203]    [Pg.103]    [Pg.295]    [Pg.151]    [Pg.299]    [Pg.361]    [Pg.212]    [Pg.144]    [Pg.165]    [Pg.201]    [Pg.167]    [Pg.268]    [Pg.967]    [Pg.298]    [Pg.307]    [Pg.96]   


SEARCH



Anhydrides Tebbe methylenation

© 2024 chempedia.info