Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity, and

L = P(CH3)3 or CO, oxidatively add arene and alkane carbon—hydrogen bonds (181,182). Catalytic dehydrogenation of alkanes (183) and carbonylation of bensene (184) has also been observed. Iridium compounds have also been shown to catalyse hydrogenation (185) and isomerisation of unsaturated alkanes (186), hydrogen-transfer reactions, and enantioselective hydrogenation of ketones (187) and imines (188). [Pg.182]

Perhaps the biggest impact on the practical utilization of enzymes has been the development of nonaqueous enzymology (11,16,33,35). The use of enzymes in nonaqueous media gready expands the scope of suitable transformations, simplifies thek use, and enhances stabiUty. It also provides an easy means of regulation of the substrate specificity and regio- and enantioselectivity of enzymes by changing the reaction medium. [Pg.350]

Chiral protective groups, although less frequently used in synthesis, provide sought-after protection, diastereochemical control, and enantioselectivity, and can improve the chemical characteristics of a molecule to facilitate a synthesis. ... [Pg.326]

In recent years, several modifications of the Darzens condensation have been reported. Similar to the aldol reaction, the majority of the work reported has been directed toward diastereo- and enantioselective processes. In fact, when the aldol reaction is highly stereoselective, or when the aldol product can be isolated, useful quantities of the required glycidic ester can be obtained. Recent reports have demonstrated that diastereomeric enolate components can provide stereoselectivity in the reaction examples include the camphor-derived substrate 26, in situ generated a-bromo-A -... [Pg.17]

Although the limited examples of AE reactions on 2,3Z-substituted allyl alcohols appear to give product epoxides in good enantioselectivity, the highly substituted nature of these olefins can have a deleterious effect on the reactivity. For example, Aiai has shown that the 2,3E-substituted allyl alcohol 30 can be epoxidized with either (-)-DET or (+)-DET in good yields and enantioselectivity. However, the configurational isomer 32 is completely unreactive using (-)-DET, even after a 34 h reaction time. [Pg.57]

The Pictet-Spengler condensation has been of vital importance in the synthesis of numerous P-carboline and isoquinoline compounds in addition to its use in the formation of alkaloid natural products of complex structure. A tandem retro-aldol and Pictet-Spengler sequence was utilized in a concise and enantioselective synthesis of 18-pseudoyohimbone. Amine 49 cyclized under acidic conditions to give the condensation product 50 in good yield. Deprotection of the ketone produced the indole alkaloid 51. [Pg.476]

We are now standing in the middle of the next step of the development of cycloaddition reactions - catalytic and catalytic enantioselective versions. The last two decades have been important in catalysis - how can we increase the reaction rate, and the chemo-, regio, diastereo-, and enantioselectivity of cycloaddition reactions. Metal catalysis can meet all these requirements ... [Pg.2]

In most of the successful Diels-Alder reactions reported, dienes containing no heteroatom have been employed, and enantioselective Diels-Alder reactions of multiply heteroatom-substituted dienes, e.g. Danishefsky s diene, are rare, despite their tremendous potential usefulness in complex molecular synthesis. Rawal and coworkers have reported that the Cr(III)-salen complex 15 is a suitable catalyst for the reaction of a-substituted a,/ -unsubstituted aldehydes with l-amino-3-siloxy dienes [21] (Scheme 1.28, Table 1.12). The counter-ion of the catalyst is important and good results are obtained in the reaction using the catalyst paired with the SbFg anion. [Pg.21]

Evans et al. reported that the his(oxazolinyl)pyridine (pybox) complex of copper(II) 17 is a selective catalyst of Diels-Alder reactions between a-bromoacrolein or methacrolein and cydopentadiene affording the adducts in high enantioselectivity [23] (Scheme 1.30). Selection of the counter-ion is important to achieve a satisfactory reaction rate and enantioselectivity, and [Cu(pyhox)](ShFg)2 gave the best result. This catalyst is also effective for the Diels-Alder reaction of acrylate dieno-philes (vide infra). [Pg.22]

Yamamoto et al. were probably the first to report that chiral aluminum(III) catalysts are effective in the cycloaddition reactions of aldehydes [11]. The use of chiral BINOL-AlMe complexes (R)-S was found to be highly effective in the cycloaddition reaction of a variety of aldehydes with activated Danishefsky-type dienes. The reaction of benzaldehyde la with Danishefsky s diene 2a and traws-l-methoxy-2-methyl-3-(trimethylsilyloxy)-l,3-pentadiene 2b affords cis dihydropyrones, cis-3, as the major product in high yield with up to 97% ee (Scheme 4.6). The choice of the bulky triarylsilyl moiety in catalyst (J )-8b is crucial for high yield and the en-antioselectivity of the reaction in contrast with this the catalysts derived from AlMe3 and (J )-3,3 -disubstituted binaphthol (substituent = H, Me, Ph) were effective in stoichiometric amounts only and were less satisfactory with regard to reactivity and enantioselectivity. [Pg.156]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

A chiral titanium(IV) complex has also been used by Wada et al. for the intermole-cular cycloaddition of ( )-2-oxo-l-phenylsulfonyl-3-alkenes 45 with enol ethers 46 using the TADDOL-TiX2 (X=C1, Br) complexes 48 as catalysts in an enantioselective reaction giving the dihydropyrans 47 as shown in Scheme 4.32 [47]. The reaction depends on the anion of the catalyst and the best yield and enantioselectivity were found for the TADDOL-TiBr2 up to 97% ee of the dihydropyrans 47 was obtained. [Pg.178]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

The effect of the metals used was then examined (Table 5.4). When the group 4 metals, titanium, zirconium, and hafnium, were screened it was found that a chiral hafnium catalyst gave high yields and enantioselectivity in the model reaction of aldimine lb with 7a, while lower yields and enantiomeric excesses were obtained using a chiral titanium catalyst [17]. [Pg.192]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

The nickel and cohalt aqua complexes were even more effective, both for catalytic activity and enantioselectivity, than the corresponding anhydrous complexes (Scheme 7.5). Addition of three equivalents of water to the anhydrous nickel complex recovered the catalytic efficiency. DBFOX/Ph complexes derived from manga-nese(II), iron(II), copper(II), and zinc(II) perchlorates, both anhydrous and vef. [Pg.253]

Among the J ,J -DBFOX/Ph-transition(II) metal complex catalysts examined in nitrone cydoadditions, the anhydrous J ,J -DBFOX/Ph complex catalyst prepared from Ni(C104)2 or Fe(C104)2 provided equally excellent results. For example, in the presence of 10 mol% of the anhydrous nickel(II) complex catalyst R,R-DBFOX/Ph-Ni(C104)2, which was prepared in-situ from J ,J -DBFOX/Ph ligand, NiBr2, and 2 equimolar amounts of AgC104 in dichloromethane, the reaction of 3-crotonoyl-2-oxazolidinone with N-benzylidenemethylamine N-oxide at room temperature produced the 3,4-trans-isoxazolidine (63% yield) in near perfect endo selectivity (endo/exo=99 l) and enantioselectivity in favor for the 3S,4J ,5S enantiomer (>99% ee for the endo isomer. Scheme 7.21). The copper(II) perchlorate complex showed no catalytic activity, however, whereas the ytterbium(III) triflate complex led to the formation of racemic cycloadducts. [Pg.268]

In the nitrone cycloaddition reactions catalyzed by the l ,J -DBFOX/Ph transition metal complexes also, the diastereo- and enantioselectivities were found to depend upon the presence of MS 4 A [71]. Thus, both the selectivities were much lowered in the iron(II) or nickel(II) complex-catalyzed reactions without MS 4 A,... [Pg.270]

The parent five-membered nitronate having no substituent at the 3-position was too unstable to be isolated. However, 3-substituted derivatives were highly stabilized. Especially, the 3-ethyl derivatives having a terminal electron-withdrawing substituent are readily available by the dehydrochlorination of 3-chloro-l-nitropropane in the presence of electron-deficient alkenes. It was our delight that the reaction of 3-al-kyl-substituted five-membered nitronates was also successfully catalyzed by R,R-DBFOX/Ph-Ni(SbFg)2 complex to at room temperature. This reaction was highly endo-selective (cisjtrans= 91 9) and enantioselective for the endo cycloadduct (92% ee). [Pg.273]


See other pages where Enantioselectivity, and is mentioned: [Pg.162]    [Pg.512]    [Pg.517]    [Pg.471]    [Pg.253]    [Pg.99]    [Pg.99]    [Pg.349]    [Pg.56]    [Pg.92]    [Pg.16]    [Pg.133]    [Pg.146]    [Pg.163]    [Pg.164]    [Pg.168]    [Pg.183]    [Pg.195]    [Pg.207]    [Pg.216]    [Pg.224]    [Pg.230]    [Pg.239]    [Pg.243]    [Pg.251]    [Pg.268]    [Pg.269]    [Pg.271]    [Pg.275]    [Pg.289]    [Pg.291]   
See also in sourсe #XX -- [ Pg.939 ]




SEARCH



And enantioselectivity alkylation

Best Synthetic Methods Enantioselective Oxidation and Reduction

Catalytic Enantioselective Olefin Metathesis and Natural Product Synthesis

Catalytic cycle and enantioselective step

Enantioelective (stereoelective) and enantioselective (stereoselective) polymerization

Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis

Enantioselective Alkylations and Additions of Other C -nucleophiles to Imines

Enantioselective Catalysis in Alkylations and Allylations of Enolates

Enantioselective Chromatography and Related Techniques

Enantioselective Conjugate Additions of Enolates and other Stabilized Carbon Nucleophiles

Enantioselective Construction of Oxygenated and Halogenated

Enantioselective Distillations and Foam Flotation

Enantioselective Hydrogenation of Unsaturated Acid and Ester Derivatives

Enantioselective Inhibition and Activation Allosteric Effects

Enantioselective Oxidation, Reduction, Functionalization and Desymmetrization

Enantioselective Pheromone Synthesis and Pesticide Science

Enantioselective Phosphorus and Arsenic Ylide Catalysis

Enantioselective Preparation of Alcohols and Amines

Enantioselective Preparation of Secondary Alcohols and Amines

Enantioselective Reactions of Unsymmetrical Allylic Esters Catalyzed by Molybdenum, Ruthenium, Rhodium, and Iridium

Enantioselective Selenium and Tellurium Ylide Catalysis

Enantioselective Sharpless Dihydroxylations and Aminohydroxylations

Enantioselective Synthesis of Alcohols and Amines

Enantioselective and Isotope Analysis—Key Steps to flavour Authentication

Enantioselective nickel-catalysed domino and tandem reactions

Enantioselectivity and conclusions

Enantioselectivity diastereoselectivity and

Enzyme Formulation for the Activity and Enantioselectivity of Lipases in Organic Solvents

Heterogeneous Enantioselective Catalysts in Industrial Research and Application

High- and Medium-Throughput Screening Systems for Assaying the Enantioselectivity of Enzymatic Reactions

Identification of Amino Acid Residues Relevant to Substrate Specificity and Enantioselectivity

Immobilization of Transition Metal Complexes and Their Application to Enantioselective Catalysis

Mechanistic studies and derivation of a model for the enantioselective step

Modification of Stereo and Enantioselectivity

Preparation of Heterogeneous Catalysts for Chemo- and Enantioselective Hydrogenation Reactions

Regio- and Enantioselective Enzymatic Reduction

Route C. Synthesis and Enantioselective Hydrogenation of Keto Ester

Substrate Scope, Activity, and Enantioselectivity

The Enantioselective Toxicities of Drugs and Pharmaceuticals

© 2024 chempedia.info