Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical techniques ultraviolet spectroscopy

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

The field of steroid analysis includes identification of steroids in biological samples, analysis of pharmaceutical formulations, and elucidation of steroid stmctures. Many different analytical methods, such as ultraviolet (uv) spectroscopy, infrared (ir) spectroscopy, nuclear magnetic resonance (nmr) spectroscopy, x-ray crystallography, and mass spectroscopy, are used for steroid analysis. The constant development of these analytical techniques has stimulated the advancement of steroid analysis. [Pg.448]

Modem analytical techniques have been developed for complete characteri2ation and evaluation of a wide variety of sulfonic acids and sulfonates. The analytical methods for free sulfonic acids and sulfonate salts have been compiled (28). Titration is the most straightforward method of evaluating sulfonic acids produced on either a laboratory or an iadustrial scale (29,30). Spectroscopic methods for sulfonic acid analysis iaclude ultraviolet spectroscopy, iafrared spectroscopy, and and nmr spectroscopy (31). Chromatographic separation techniques, such as gc and gc/ms, are not used for free... [Pg.98]

The use of infra-red or ultraviolet spectroscopy to examine the molecular groups present in a chemical compound is familiar to any chemist. One of the main uses of this technique is to apply a range of electromagnetic frequencies to a sample and thus identify the frequency at which a process occurs. This can be characteristic of, say, the stretch of a carbonyl group or an electronic transition in a metal complex. The frequency, wavelength or wavenumber at which an absorption occurs is of most interest to an analytical chemist. In order to use this information quantitatively, for example to establish the concentration of a molecule present in a sample, the Beer-Lambert law is used ... [Pg.100]

A major consequence of using regulatory limits based on degradant formation, rather than absolute change of the API level in the drug product, is that it necessitates the application and routine use of very sensitive analytical techniques [ 10]. In addition, the need to resolve both structurally similar, as well as structurally diverse degradants of the API, mandates the use of analytical separation techniques, for example, HPLC, CE, often coupled with highly sensitive detection modes, for example, ultraviolet (UV) spectroscopy, fluorescence (F) spectroscopy, electrochemical detection (EC), mass spectroscopy (MS), tandem mass spectroscopy (MS-MS) and so forth. [Pg.23]

Ultraviolet and visible spectroscopy (UV-vis) is an analytical technique useful in the investigation of some organic molecules. Absorption of energy in... [Pg.70]

NMR is not, of course, the only analytical technique used to establish the composition and microstructure of polymeric materials. Others include >66 ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and infrared (IR) spectroscopy. IR and Raman spectroscopy are particularly useful, when by virtue of cross-linking (see. e.g. Chapter 9), or the presence of rigid aromatic units (see Chapter 4). the material neither melts nor dissolves in any solvent suitable for NMR. The development of microscopy based on these spectroscopic methods now makes such analysis relatively simple (see below). Space precludes a detailed account of these and many other techniques familiar to the organic chemist. Instead we focus for the remainder of the chapter on some of the techniques used to characterize the physical properties of polymeric materials. [Pg.9]

A number of less commonly used analytical techniques are available for determining PAHs. These include synchronous luminescence spectroscopy (SLS), resonant (R)/nonresonant (NR)-synchronous scan luminescence (SSL) spectrometry, room temperature phosphorescence (RTP), ultraviolet-resonance Raman spectroscopy (UV-RRS), x-ray excited optical luminescence spectroscopy (XEOL), laser-induced molecular fluorescence (LIMP), supersonic jet/laser induced fluorescence (SSJ/LIF), low- temperature fluorescence spectroscopy (LTFS), high-resolution low-temperature spectrofluorometry, low-temperature molecular luminescence spectrometry (LT-MLS), and supersonic jet spectroscopy/capillary supercritical fluid chromatography (SJS/SFC) Asher 1984 Garrigues and Ewald 1987 Goates et al. 1989 Jones et al. 1988 Lai et al. 1990 Lamotte et al. 1985 Lin et al. 1991 Popl et al. 1975 Richardson and Ando 1977 Saber et al. 1991 Vo-Dinh et al. 1984 Vo- Dinh and Abbott 1984 Vo-Dinh 1981 Woo et al. 1980). More recent methods for the determination of PAHs in environmental samples include GC-MS with stable isotope dilution calibration (Bushby et al. 1993), capillary electrophoresis with UV-laser excited fluorescence detection (Nie et al. 1993), and laser desorption laser photoionization time-of-flight mass spectrometry of direct determination of PAH in solid waste matrices (Dale et al. 1993). [Pg.347]

SY Lin. Derivative Ultraviolet Spectroscopy of Lignin and Lignin Model Compounds A New Analytical Technique. Svensk. Papperstidn. 85 R162-R171, 1982. [Pg.94]

The first concern in the selection of the sample preparation solvent is to optimize recovery. However, a secondary consideration is the sample solvent s effect on the analysis. This is true whether the analytical technique is ultraviolet spectroscopy (UV), high-performance liquid chromatography (HPLC), or gas chromatography (GC). The method development sequence can be described as (a) development of the chromatographic separation, (b) development of the sample preparation method, and then (c) evaluation and optimization of the interaction of the sample preparation with the instrumental method. [Pg.78]

Quantitative infrared spectroscopy suffers certain disadvantages when compared with other analytical techniques and thus it tends to be confined to specialist applications. However, there are certain applications where it is used because it is cheaper or faster. The technique is often used for the analysis of one component of a mixture, particularly when the compounds in the mixture are alike chemically or haye very similar physical properties, e.g. structural isomers. In these cases, analysis by using ultraviolet/visible spectroscopy is difficult because the spectra of the components will be almost identical Chromatographic analysis may be of limited use because the separation of isomers, for example, is difficult to achieve. The infrared spectra of isomers are usually quite different in the fingerprint region. Another advantage of the infrared technique is that it is non-destructive and requires only a relatively small amount of sample. [Pg.85]

The use of analytical instruments to detect, analyze and rate the emissions has been a convention in this field (Rock et ai, 2008 Yamazoe and Miura, 1995) examples include instruments such as infra-red (IR) spectroscopy, ultraviolet (UV) absorption, chemiluminescence (Yamazoe and Miura, 1995) and gas chromatography/mass spectrometry (GC/MS) (James et al, 2005). These analytical techniques are associated with good limits of detection and fast response times (Akbar et al., 2006 Szabo et aL, 2003) however, they do suffer from various disadvantages - such as maintenance requirements, as well as weight and portability issues (Akbar et aL, 2006). They tend to be expensive and therefore are unsuited for tn-situ analysis or continuous operation (Rock et al, 2008). Data gathering may also be time-consuming with these methods (Yamazoe and Miura, 1995), and the requirement for trained personnel to utilise the instruments and conduct analysis also limits their effectiveness (James et al, 2005). [Pg.434]

The derivatization of analytes is very important in several branches of analytical chemistry. It expands the fields of application of various spectroscopic techniques (ultraviolet-visible (UV-vis), fluorimetry, nuclear magnetic resonance (NMR), and mass spectroscopies), and in several cases increases also the selectivity and sensitivity of these techniques. Derivatization is also an inevitable tool in all chromatographic and electrophoretic techniques. In gas chromatography (GC), the main importance of derivatization is the improvement of the volatility/thermal stability of the analytes, and in all of the discussed separation techniques it has the potential of increasing the selectivity of the separation (including enantiomeric separations) and the sensitivity of the detection. [Pg.841]

Other useful microscopic analytical techniques include hot stage, fluorescence, and cathodolumines-cence microscopies micro-infrared spectroscopy micro-Raman spectroscopy ultraviolet-visible microspectrophotometry and X-ray diffraction however, the discussion of these techniques is beyond the scope of this article. Briefly stated, each of these techniques can be used to ascertain additional information about characteristic properties of a material. The microscopist must be aware of all of these techniques, and others, so as to be able to extract the necessary information from a sample when the need arises. [Pg.3085]


See other pages where Analytical techniques ultraviolet spectroscopy is mentioned: [Pg.388]    [Pg.398]    [Pg.6]    [Pg.303]    [Pg.398]    [Pg.199]    [Pg.202]    [Pg.186]    [Pg.231]    [Pg.232]    [Pg.31]    [Pg.131]    [Pg.429]    [Pg.95]    [Pg.2670]    [Pg.251]    [Pg.88]    [Pg.2]    [Pg.82]    [Pg.1034]    [Pg.2116]    [Pg.1593]    [Pg.271]    [Pg.83]    [Pg.241]    [Pg.469]    [Pg.215]    [Pg.19]    [Pg.1735]    [Pg.1736]   
See also in sourсe #XX -- [ Pg.311 ]




SEARCH



Analytical spectroscopies

Analytical techniques

Spectroscopy techniques

Ultraviolet spectroscopy

© 2024 chempedia.info