Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analytical methods isolation

Conceive syntheses of the chosen, final, and intermediate compounds Select appropriate starting materials, reagents, reactions, and conditions Monitor the progress of reactions, employing suitable analytical methods Isolate, purify, characterize, and identify organic compounds Operate standard Items of laboratory equipment Spectrometers Infrared... [Pg.102]

When it comes to the heaviest of petroieum fractions, modern analytical methods are not able to isolate and characterize the molecules completely. In the absence of something better, the analyst separates the heavy fractions into different categories, which leads merely to definitions that are workable but are no longer in terms of exact structure. [Pg.13]

Suppose we have a sample containing an analyte in a matrix that is incompatible with our analytical method. To determine the analyte s concentration we first separate it from the matrix using, for example, a liquid-liquid extraction. If there are additional analytes, we may need to use additional extractions to isolate them from the analyte s matrix. For a complex mixture of analytes this quickly becomes a tedious process. [Pg.544]

A multiresidue analytical method based on sohd-phase extraction enrichment combined with ce has been reported to isolate, recover, and quantitate three sulfonylurea herbicides (chlorsulfuron, chlorimuron, and metasulfuron) from soil samples (105). Optimi2ation for ce separation was achieved using an overlapping resolution map scheme. The recovery of each herbicide was >80% and the limit of detection was 10 ppb (see Soil chemistry of pesticides). [Pg.248]

In looking for the mechanism, many intermediates are assumed. Some of these are stable molecules in pure form but very active in reacting systems. Other intermediates are in very low concentration and can be identified only by special analytical methods, like mass spectrometry (the atomic species of hydrogen and halogens, for example). These are at times referred to as active centers. Others are in transition states that the reacting cheimicals form with atoms or radicals these rarely can be isolated. In heterogeneous catalytic reaction, the absorbed reactant can... [Pg.115]

This was confirmed by an independent analytical method by Spath and Boschan, and by a synthesis of pellotine by Spath and Becke, starting from the benzyl ether of 2-hydroxy-3 4-dimethoxyacetophenone, which was converted by aminoacetal into the Schiff s base (V). This, on treatment with sulphuric acid (73 per cent.), followed by warm water, gave 8-hydroxy-6 7-dimethoxy-l-methyh 5oquinoline (VI), of which the methiodide, m.p. 188-189-5°, on reduction furnishes pellotine (IV). From dZ-pellotine so formed Spath and Kesztler, by a special process of fractionation, isolated 1-pellotine having — 15-2° (CHCI3), for which... [Pg.158]

LC is not only a powerful analytical method as such, but it also allows effective sample preparation for GC. The fractions of interest (heart-cuts) are collected and introduced into the GC. The GC column can then be used to separate the fractions of different polarity on the basis of volatility differences. The separation efficiency and selectivity of LC is needed to isolate the compounds of interest from a complex matrix. [Pg.273]

The analytical method described is also used in following the consumption of peroxybenzoic acid or other peroxy acids during an oxidation reaction it has also been used in determining the conversion of other carboxylic acids to peroxy acids when solvent extraction has been used in the isolation. [Pg.95]

PLC is used for separations of 2 to 5 mg of sample on thin-layer chromatography (TLC) plates (0.25-nun layer thickness) or high-performance TLC (HPTLC) plates (0.1-mm thickness). In these instances, the method is termed micropreparative TLC. The isolation of one to five compounds in amounts ranging from 5 to 1000 mg is carried out on thicker layers. PLC is performed for isolation of compounds to be used in other tasks, i.e., further identification by various analytical methods, such as ultraviolet (UV) solution spectrometry [1] or gas chromatography/mass spectrometry (GC/MS) [2], obtaining analytical standards, or investigations of chemical or biological properties [3]. [Pg.177]

There are three main methods for quantitative estimation of an analyte after isolation on thin-layer chromatoplates ... [Pg.353]

As more sensitive analytical methods for pesticides are developed, greater care must be taken to avoid sample contamination and misidentification of residues. For example, in pesticide leaching or field dissipation studies, small amounts of surface soil coming in contact with soil core or soil pore water samples taken from further below the ground surface can sometimes lead to wildly inaccurate analytical results. This is probably the cause of isolated, high-level detections of pesticides in the lower part of the vadose zone or in groundwater in samples taken soon after application when other data (weather, soil permeability determinations and other pesticide or tracer analytical results) imply that such results are highly improbable. [Pg.618]

Based on the general scenario provided above, the analytical method to determine transference or transport numbers has been devised and is carried out in an apparatus which can essentially be regarded as an improvement over the Hittorf apparatus. This consists of two vertical tubes connected together with a U-tube in the middle all three tubes are provided with stop-cocks at the bottom. The U-tube is also provided with stop-cocks at the top by closing these, the solutions in the cathode and anode limbs can be isolated. The silver anode is sealed in a glass tube as shown, and the cathode is a piece of freshly silvered silver foil. The apparatus is filled up with a standard solution of silver nitrate and a steady current of about 0.01 ampere is passed for 2-3 hours. In order to avoid the occurrence of too large a change in concentration it is necessary to pass the current only for a short duration. The... [Pg.618]

One of the attractive features of SFE with CO2 as the extracting fluid is the ability to directly couple the extraction method with subsequent analytical methods (both chromatographic and spectroscopic). Various modes of on-line analyses have been reported, and include continuous monitoring of the total SFE effluent by MS [6,7], SFE-GC [8-11], SFE-HPLC [12,13], SFE-SFC [14,15] and SFE-TLC [16]. However, interfacing of SFE with other techniques is not without problems. The required purity of the CO2 for extraction depends entirely on the analytical technique used. In the off-line mode SFE takes place as a separate and isolated process to chromatography extracted solutes are trapped or collected, often in a suitable solvent for later injection on to chromatographic instrumentation. Off-line SFE is inherently simpler to perform, since only the extraction parameters need to be understood, and several analyses can be performed on a single extract. Off-line SFE still dominates over on-line determinations of additives-an... [Pg.429]

Often the faith in analytical methods gives a false sense of high yields, when the tars or heavy by-products are not part of the quantification. One should always get an in-hand yield, actually isolating a known weight of a pure product from a known amount of starting materials. [Pg.323]

Mass spectroscopy is one of the few analytical methods that matches the theoretical chemists desire to observe molecules isolated, in vacuum. As such, calculations of reactions pathways, transition state and co-ordination are directly relevant and appropriate to measurements made using mass spectrometry. [Pg.712]

The majority of the analytical methods for detection of N-nitroso compounds have employed gas chromatography (GC) or liquid chromatography (LC) in conjunction with a thermal energy analyzer (TEA) [20], which relies on the pyrolytic breakdown of N-NO moieties to release the nitrosyl radical. Despite the isolation techniques used, the quantitative determination of N-nitroso compounds requires a concomitant posi-... [Pg.55]

Hyphenated methods involve both separation and identification of components in one analytical procedure and are commonly used in investigating soil chemistry. These investigations can involve one separation step and one identification step, two separation steps and one identification step, and two separation and two identification steps. Hyphenated analytical method instruments are arranged in tandem, without the analyte being isolated between the applications of the two methods. This leads to a very long list of possible combinations of instrumentation and, potentially, any separation method can be paired with any identification method. The list of hyphenated methods is long, although only a few methods are commonly used in soil analysis as can be seen in the review by DAmore et al. [1],... [Pg.321]

Novel pyranoanthocyanins have also been isolated and identified in blackcurrant (Ribes nigrum) seed using HPLC, 2D NMR and ES-MS. Blackcurrant seeds were extracted with acetone-water (70 30, v/v) and the components of the extract were separated in a polyamide column followed by HPLC-DAD. The new pigments were finally separated in an MCI-HP20 column. The chemical structures of anthocyanins 1-2 and the novel pyranoanthocyanins 3-6 with the pyrano[4,3,2-de]-l-bcn/opyrylium core structure are shown in Fig. 2.110. It was stated that the analytical method developed separated well the novel pyranoanthocyanins [245],... [Pg.266]


See other pages where Analytical methods isolation is mentioned: [Pg.239]    [Pg.247]    [Pg.239]    [Pg.247]    [Pg.150]    [Pg.257]    [Pg.530]    [Pg.201]    [Pg.451]    [Pg.69]    [Pg.122]    [Pg.94]    [Pg.8]    [Pg.201]    [Pg.307]    [Pg.142]    [Pg.487]    [Pg.61]    [Pg.302]    [Pg.902]    [Pg.1001]    [Pg.146]    [Pg.24]    [Pg.173]    [Pg.754]    [Pg.520]    [Pg.228]    [Pg.144]    [Pg.483]    [Pg.849]    [Pg.290]    [Pg.79]    [Pg.408]    [Pg.38]    [Pg.255]   


SEARCH



Isolation method

© 2024 chempedia.info