Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amphoteric surfactants anions

See Surfactants (Amphoteric), Surfactants (Anionic), Surfactants (Cationic), Surfactants (Nonionic). [Pg.503]

Alkanolamides Alkyl sulfonates Amine oxides Amphoteric surfactants Anionic surfactants Cocoamidopropyl betaine Betaine derivatives Amido guanidines Disulfonates... [Pg.159]

Anionic surfactants are the most commonly used class of surfactant. Anionic surfactants include sulfates such as sodium alkylsulfate and the homologous ethoxylated versions and sulfonates, eg, sodium alkylglycerol ether sulfonate and sodium cocoyl isethionate. Nonionic surfactants are commonly used at low levels ( 1 2%) to reduce soap scum formation of the product, especially in hard water. These nonionic surfactants are usually ethoxylated fatty materials, such as H0CH2CH20(CH2CH20) R. These are commonly based on triglycerides or fatty alcohols. Amphoteric surfactants, such as cocamidopropyl betaine and cocoamphoacetate, are more recent surfactants in the bar soap area and are typically used at low levels (<2%) as secondary surfactants. These materials can have a dramatic impact on both the lathering and mildness of products (26). [Pg.158]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

An unknown commercial detergent may contain some combination of anionic, nonionic, cationic, and possibly amphoteric surfactants, inorganic builders and fillers as weU as some minor additives. In general, the analytical scheme iacludes separation of nonsurfactant and inorganic components from the total mixture, classification of the surfactants, separation of iadividual surfactants, and quantitative determination (131). [Pg.538]

Protease performance is strongly influenced by detergent pH and ionic strength. Surfactants influence both protease performance and stabiUty in the wash solution. In general, anionic surfactants are more aggressive than amphoteric surfactants, which again are more aggressive than nonionic surfactants. [Pg.294]

A foam can be generated by using an inert gas and a fluorocarbon surfactant solution in admixture with an amphoteric or anionic hydrocarbon surfactant solution. A relatively small amount of the fluorocarbon surfactant is operative when mixed with the hydrocarbon surfactant and foamed. The foam has better stability than a foam made with hydrocarbon surfactant alone when in contact with oil [1491]. [Pg.212]

As mentioned in Table 8.1, amphoteric surfactants contain both an anionic and a cationic group. In acidic media they tend to behave as cationic agents and in alkaline media as anionic agents. Somewhere between these extremes lies what is known as the isoelectric point (not necessarily, or even commonly, at pH 7), at which the anionic and cationic properties are counterbalanced. At this point the molecule is said to be zwitterionic and its surfactant properties and solubility tend to be at their lowest. These products have acquired a degree of importance as auxiliaries in certain ways [20-25], particularly as levelling agents in the application of reactive dyes to wool. [Pg.26]

A surfactant can be grouped in one of the four classes - anionic, nonionic, cationic and amphoteric surfactants, depending on what charge is present in the chain-carrying hydrophilic portion of the molecule after dissociation in aqueous solution. Tab. 4.1 shows examples of surfactants most commonly used for detergents. [Pg.87]

Anionic surfactants Nonionic surfactants Cationic surfactants Amphoteric surfactants... [Pg.87]

Contrary to anionic and nonionic agents, they have poor detergency and are used more in the preparation of germicides, fabric softeners, and emulsifiers. Amphoteric surfactants are produced in much smaller amounts (5xl04 metric tons, near to 2% of the total production) [125] they are biodegradable and their ecotoxicological importance can be considered low. Their environmental occurrence up to know has been just occasional. [Pg.143]

Amphoteric surfactants have two or more functional groups which, depending on the conditions of the medium, can be ionised in aqueous solutions to give the compound the characteristics of either an anionic... [Pg.38]

Even if this class covers the smallest market segment, amphoteric surfactants still remain useful because of their unique properties, which justifies their comparably high manufacturing costs. Since they have partial anionic and cationic character, they can be compatible, under specific conditions, with both anionic and cationic surfactants. They can function in acid or basic pH systems and, at their isoelectric point, they exhibit special behaviour. Many amphoteric surfactants demonstrate exceptional foaming and detergency properties combined with antistatic effects. [Pg.48]

To reduce the potential risk of environmentally harmful surfactants, requirements of a minimum primary degradation amounting to 80% for anionic and non-ionic surfactants was stipulated as far back as 1977 [4]. However, within this early regulation no restraints were included regarding cationic or amphoteric surfactants as these did not hold a significant market share when the laws came into force. [Pg.554]

Numerous laboratory sorption studies have been conducted for the most common surfactants non-ionics, such as AE and alkylphenol ethox-ylates (APEOs) anionics such as LAS, secondary alkane sulfonates (SASs) and sodium dodecylsulfates (SDS) and on different natural sorbents [3,8,15-17], Until now, cationic and amphoteric surfactants have received less study than the other types, probably because they represent only 5 and 2%, respectively, of the total surfactant consumption in Western Europe (1998) [18]. [Pg.639]

A broad range of information pertaining to the toxicity of several classes of surfactants including anionic (linear alkylbenzene sulfonates (LAS), alkylether sulfates (AES), alkyl sulfates (AS), non-ionic (alkylphenol ethoxylates (APEO)), cationic (ditallow dimethyl ammonium chloride (DTDMAC)—a group of quaternary ammonium salts of distearyl ammonium chloride (DSDMAC)) and amphoteric surfactants (alkyl-betaines) is available. Several reviews of the scientific literature have been published [3-5,20]. [Pg.857]

Long-lasting foam Use anionic or amphoteric surfactants, or a mixture of the two for high foaming... [Pg.248]


See other pages where Amphoteric surfactants anions is mentioned: [Pg.155]    [Pg.27]    [Pg.158]    [Pg.233]    [Pg.245]    [Pg.259]    [Pg.292]    [Pg.130]    [Pg.265]    [Pg.337]    [Pg.610]    [Pg.256]    [Pg.471]    [Pg.142]    [Pg.27]    [Pg.39]    [Pg.44]    [Pg.438]    [Pg.863]    [Pg.957]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Amphoteric

Amphotericity

Amphoterics

Amphoterism

Anion amphoteres

Anionic surfactants

Surfactants amphoterics

© 2024 chempedia.info